IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v38y1995i1p173-182.html
   My bibliography  Save this article

Monte Carlo integration, quadratic resampling, and asset pricing

Author

Listed:
  • Barraquand, Jérôme

Abstract

We present a new error reduction technique for Monte-Carlo valuation of multidimensional integrals. The method, called Quadratic Resampling, consists in applying a linear transform over a sequence of random samples. This linear transform is computed from a comparative analysis of the theoretical and empirical second order moments. The resulting linearly transformed quadrature scheme is shown to be exact for any polynomial integrand of degree two. Quadratic resampling can be efficiently combined with classical variance reduction methods such as importance sampling to further improve the accuracy of the estimate. We have applied this method for pricing a class of financial assets called European assets. Our numerical experiments show that the method is practical for computing integrals with up to one hundred dimensions. We also describe an implementation of the method on a massively parallel supercomputer, yielding two orders of magnitude of performance improvement over the same implementation on a desktop workstation.

Suggested Citation

  • Barraquand, Jérôme, 1995. "Monte Carlo integration, quadratic resampling, and asset pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 38(1), pages 173-182.
  • Handle: RePEc:eee:matcom:v:38:y:1995:i:1:p:173-182
    DOI: 10.1016/0378-4754(93)E0080-O
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378475493E0080O
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0378-4754(93)E0080-O?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    2. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    3. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    4. Galai, Dan & Raviv, Alon & Wiener, Zvi, 2007. "Liquidation triggers and the valuation of equity and debt," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3604-3620, December.
    5. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    6. Siu, Tak Kuen & Yang, Hailiang & Lau, John W., 2008. "Pricing currency options under two-factor Markov-modulated stochastic volatility models," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 295-302, December.
    7. Kostrova, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2016. "Monte-Carlo Simulation and Stochastic Programming in Real Options Valuation: the Case of Perennial Energy Crop Cultivation," Discussion Papers 250253, University of Bonn, Institute for Food and Resource Economics.
    8. Edoardo Berton & Lorenzo Mercuri, 2021. "An Efficient Unified Approach for Spread Option Pricing in a Copula Market Model," Papers 2112.11968, arXiv.org, revised Feb 2023.
    9. Engstrom, Malin & Norden, Lars, 2000. "The early exercise premium in American put option prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 461-479, December.
    10. Zhushun Yuan & Gemai Chen, 2009. "Asymptotic Normality for EMS Option Price Estimator with Continuous or Discontinuous Payoff Functions," Management Science, INFORMS, vol. 55(8), pages 1438-1450, August.
    11. Joshua Rosenberg, 1999. "Empirical Tests of Interest Rate Model Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-015, New York University, Leonard N. Stern School of Business-.
    12. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Phelim P. Boyle, 1985. "Accounting for equity investments of life insurance companies," Contemporary Accounting Research, John Wiley & Sons, vol. 1(2), pages 116-144, March.
    15. Jorgensen, Peter Lochte, 2007. "Traffic light options," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3698-3719, December.
    16. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    17. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    18. Lu, Ziqiang & Zhu, Yuanguo & Li, Bo, 2019. "Critical value-based Asian option pricing model for uncertain financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 694-703.
    19. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    20. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:38:y:1995:i:1:p:173-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.