IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v224y2024ipap50-62.html
   My bibliography  Save this article

Photovoltaic module series resistance identification at its maximum power production

Author

Listed:
  • Lappalainen, Kari
  • Piliougine, Michel
  • Valkealahti, Seppo
  • Spagnuolo, Giovanni

Abstract

Analysis of measured current–voltage curves offers a cost-effective option for online condition monitoring of photovoltaic (PV) modules. The current–voltage curves of PV modules can be modeled accurately using the well-known electrical single-diode model. In practical applications, condition monitoring should be based on measurements performed near the maximum power point (MPP) by affecting PV power production negligibly. The series resistance is the most important single-diode model parameter in assessing the condition of PV modules; this paper proposes a novel method for its determination by using measurements acquired near the MPP only. The proposed method can be used with any series resistance identification procedure based on current–voltage curve measurements. The proposed method is experimentally validated using current–voltage curves of two PV modules measured in Malaga, Spain. This study allows to assess that the series resistance can be accurately determined from measurements performed near the MPP. Especially the results obtained with an ISOFOTON ISF-145 PV module are very promising: the scaled series resistances obtained from measurements done without lowering the PV power more than 2% of the maximum power differ on the average by no more than 2% of the series resistances obtained from the whole current–voltage curves.

Suggested Citation

  • Lappalainen, Kari & Piliougine, Michel & Valkealahti, Seppo & Spagnuolo, Giovanni, 2024. "Photovoltaic module series resistance identification at its maximum power production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 50-62.
  • Handle: RePEc:eee:matcom:v:224:y:2024:i:pa:p:50-62
    DOI: 10.1016/j.matcom.2023.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423002409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heidi Kalliojärvi & Kari Lappalainen & Seppo Valkealahti, 2022. "Feasibility of Photovoltaic Module Single-Diode Model Fitting to the Current–Voltage Curves Measured in the Vicinity of the Maximum Power Point for Online Condition Monitoring Purposes," Energies, MDPI, vol. 15(23), pages 1-21, November.
    2. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    3. Nader Anani & Haider Ibrahim, 2020. "Adjusting the Single-Diode Model Parameters of a Photovoltaic Module with Irradiance and Temperature," Energies, MDPI, vol. 13(12), pages 1-17, June.
    4. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    5. Khan, Firoz & Baek, Seong-Ho & Kim, Jae Hyun, 2016. "Wide range temperature dependence of analytical photovoltaic cell parameters for silicon solar cells under high illumination conditions," Applied Energy, Elsevier, vol. 183(C), pages 715-724.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piliougine, M. & Spagnuolo, G. & Sidrach-de-Cardona, M., 2020. "Series resistance temperature sensitivity in degraded mono–crystalline silicon modules," Renewable Energy, Elsevier, vol. 162(C), pages 677-684.
    2. Li, Baojie & Hansen, Clifford W. & Chen, Xin & Diallo, Demba & Migan-Dubois, Anne & Delpha, Claude & Jain, Anubhav, 2024. "A robust I–V curve correction procedure for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 224(C).
    3. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    4. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    5. Habib Kraiem & Ezzeddine Touti & Abdulaziz Alanazi & Ahmed M. Agwa & Tarek I. Alanazi & Mohamed Jamli & Lassaad Sbita, 2023. "Parameters Identification of Photovoltaic Cell and Module Models Using Modified Social Group Optimization Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Fonseca Alves, Ricardo Henrique & Deus Júnior, Getúlio Antero de & Marra, Enes Gonçalves & Lemos, Rodrigo Pinto, 2021. "Automatic fault classification in photovoltaic modules using Convolutional Neural Networks," Renewable Energy, Elsevier, vol. 179(C), pages 502-516.
    7. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    8. Mokhtar Jlidi & Oscar Barambones & Faiçal Hamidi & Mohamed Aoun, 2024. "ANN for Temperature and Irradiation Prediction and Maximum Power Point Tracking Using MRP-SMC," Energies, MDPI, vol. 17(12), pages 1-21, June.
    9. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    10. Chedid, Riad & Sawwas, Ahmad & Fares, Dima, 2020. "Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage," Energy, Elsevier, vol. 200(C).
    11. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    12. Di Tommaso, Antonio & Betti, Alessandro & Fontanelli, Giacomo & Michelozzi, Benedetto, 2022. "A multi-stage model based on YOLOv3 for defect detection in PV panels based on IR and visible imaging by unmanned aerial vehicle," Renewable Energy, Elsevier, vol. 193(C), pages 941-962.
    13. Dong, Xiao-Jian & Shen, Jia-Ni & Ma, Zi-Feng & He, Yi-Jun, 2022. "Simultaneous operating temperature and output power prediction method for photovoltaic modules," Energy, Elsevier, vol. 260(C).
    14. Handrea Bernando Tambunan & Dzikri Firmansyah Hakam & Iswan Prahastono & Anita Pharmatrisanti & Andreas Putro Purnomoadi & Siti Aisyah & Yonny Wicaksono & I Gede Ryan Sandy, 2020. "The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System," Energies, MDPI, vol. 13(22), pages 1-22, November.
    15. Georgios Goudelis & Pavlos I. Lazaridis & Mahmoud Dhimish, 2022. "A Review of Models for Photovoltaic Crack and Hotspot Prediction," Energies, MDPI, vol. 15(12), pages 1-24, June.
    16. Qu, Jiaqi & Qian, Zheng & Pei, Yan & Wei, Lu & Zareipour, Hamidreza & Sun, Qiang, 2022. "An unsupervised hourly weather status pattern recognition and blending fitting model for PV system fault detection," Applied Energy, Elsevier, vol. 319(C).
    17. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    18. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Survey of maintenance management for photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2020. "Field Analysis of three different silicon-based Technologies in Composite Climate Condition – Part II – Seasonal assessment and performance degradation rates using statistical tools," Renewable Energy, Elsevier, vol. 147(P1), pages 2102-2117.
    20. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pa:p:50-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.