IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001733.html
   My bibliography  Save this article

A robust I–V curve correction procedure for degraded photovoltaic modules

Author

Listed:
  • Li, Baojie
  • Hansen, Clifford W.
  • Chen, Xin
  • Diallo, Demba
  • Migan-Dubois, Anne
  • Delpha, Claude
  • Jain, Anubhav

Abstract

To enable health monitoring and fault diagnosis of PV modules using current-voltage characteristics (I–V curves), it is generally necessary to correct the I–V curves measured under different environmental conditions to the standard condition. The most common correction methods are those from IEC 60891: 2021 standard. However, these methods can introduce significant errors when dealing with degraded PV modules due to the inability to account for changes in resistance. To address this, we propose an improved I–V curve procedure, denoted Pdynamic, which considers different types of degradation by dynamically deriving the correction coefficients from the measured I–V curves. To evaluate the performance, we simulate I–V curves across a wide range of irradiance and temperature for the healthy and degraded module, where the degradation involves increased series resistance, decreased shunt resistance, or both. The results reveal that Pdynamic can produce corrected I–V curves closer to the reference ones than Procedures 1, 2, and 4 of the IEC 60891:2021 standard. Moreover, Pdynamic exhibits resilience to both seasonal fluctuations and varying levels of degradation. These results highlight Pdynamic as a promising and robust I–V curve correction method, particularly for degraded PV modules. A Python-based open-source tool for this procedure is also available at https://github.com/DuraMAT/IVcorrection.

Suggested Citation

  • Li, Baojie & Hansen, Clifford W. & Chen, Xin & Diallo, Demba & Migan-Dubois, Anne & Delpha, Claude & Jain, Anubhav, 2024. "A robust I–V curve correction procedure for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001733
    DOI: 10.1016/j.renene.2024.120108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    2. Dolara, Alberto & Lazaroiu, George Cristian & Leva, Sonia & Manzolini, Giampaolo, 2013. "Experimental investigation of partial shading scenarios on PV (photovoltaic) modules," Energy, Elsevier, vol. 55(C), pages 466-475.
    3. Bouaichi, Abdellatif & Alami Merrouni, Ahmed & Hajjaj, Charaf & Messaoudi, Choukri & Ghennioui, Abdellatif & Benlarabi, Ahmed & Ikken, Badr & El Amrani, Aumeur & Zitouni, Houssin, 2019. "In-situ evaluation of the early PV module degradation of various technologies under harsh climatic conditions: The case of Morocco," Renewable Energy, Elsevier, vol. 143(C), pages 1500-1518.
    4. Heidi Kalliojärvi & Kari Lappalainen & Seppo Valkealahti, 2022. "Feasibility of Photovoltaic Module Single-Diode Model Fitting to the Current–Voltage Curves Measured in the Vicinity of the Maximum Power Point for Online Condition Monitoring Purposes," Energies, MDPI, vol. 15(23), pages 1-21, November.
    5. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    6. Hocine, Labar & Samira, Kelaiaia Mounia & Tarek, Mesbah & Salah, Necaibia & Samia, Kelaiaia, 2021. "Automatic detection of faults in a photovoltaic power plant based on the observation of degradation indicators," Renewable Energy, Elsevier, vol. 164(C), pages 603-617.
    7. Zeb, Kamran & Islam, Saif Ul & Khan, Imran & Uddin, Waqar & Ishfaq, M. & Curi Busarello, Tiago Davi & Muyeen, S.M. & Ahmad, Iftikhar & Kim, H.J., 2022. "Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Chepp, Ellen David & Gasparin, Fabiano Perin & Krenzinger, Arno, 2022. "Improvements in methods for analysis of partially shaded PV modules," Renewable Energy, Elsevier, vol. 200(C), pages 900-910.
    9. Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
    10. Tanesab, Julius & Parlevliet, David & Whale, Jonathan & Urmee, Tania, 2017. "Seasonal effect of dust on the degradation of PV modules performance deployed in different climate areas," Renewable Energy, Elsevier, vol. 111(C), pages 105-115.
    11. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    12. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    2. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    4. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    5. Lappalainen, Kari & Piliougine, Michel & Valkealahti, Seppo & Spagnuolo, Giovanni, 2024. "Photovoltaic module series resistance identification at its maximum power production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 50-62.
    6. Qu, Jiaqi & Sun, Qiang & Qian, Zheng & Wei, Lu & Zareipour, Hamidreza, 2024. "Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules," Applied Energy, Elsevier, vol. 355(C).
    7. Habib Satria & Rahmad B. Y. Syah & Moncef L. Nehdi & Monjee K. Almustafa & Abdelrahman Omer Idris Adam, 2023. "Parameters Identification of Solar PV Using Hybrid Chaotic Northern Goshawk and Pattern Search," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    8. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    9. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    10. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    11. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    12. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    13. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    14. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    15. Tamer Khatib & Dhiaa Halboot Muhsen, 2020. "Optimal Sizing of Standalone Photovoltaic System Using Improved Performance Model and Optimization Algorithm," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    16. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    18. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    19. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    20. Guohong Lai & Guoping Zhang & Shaowu Li, 2024. "An MPPT Control Strategy Based on Current Constraint Relationships for a Photovoltaic System with a Battery or Supercapacitor," Energies, MDPI, vol. 17(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.