IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v91y2016icp610-621.html
   My bibliography  Save this article

Cholera dynamics with Bacteriophage infection: A mathematical study

Author

Listed:
  • Misra, A.K.
  • Gupta, Alok
  • Venturino, Ezio

Abstract

Mathematical modeling of waterborne diseases, such as cholera, including a biological control using Bacteriophage viruses in the aquatic reservoirs is of great relevance in epidemiology. In this paper, our aim is twofold: at first, to understand the cholera dynamics in the region around a water body; secondly, to understand how the spread of Bacteriophage infection in the cholera bacterium V. cholerae controls the disease in the human population. For this purpose, we modify the model proposed by Codeço, for the spread of cholera infection in human population and the one proposed by Beretta and Kuang, for the spread of Bacteriophage infection in the bacteria population [1, 2]. We first discuss the feasibility and local asymptotic stability of all the possible equilibria of the proposed model. Further, in the numerical investigation, we have found that the parameter ϕ, called the phage adsorption rate, plays an important role. There is a critical value, ϕc, at which the model possess Hopf-bifurcation. For lower values than ϕc, the equilibrium E* is unstable and periodic solutions are observed, while above ϕc, the equilibrium E* is locally asymptotically stable, and further shown to be also globally asymptotically stable. We investigate the effect of the various parameters on the dynamics of the infected humans by means of numerical simulations.

Suggested Citation

  • Misra, A.K. & Gupta, Alok & Venturino, Ezio, 2016. "Cholera dynamics with Bacteriophage infection: A mathematical study," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 610-621.
  • Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:610-621
    DOI: 10.1016/j.chaos.2016.08.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.08.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Yuanshun & Chen, Lansun, 2009. "Modelling approach for biological control of insect pest by releasing infected pest," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 304-315.
    2. Misra, A.K. & Mishra, S.N. & Pathak, A.L. & Srivastava, P.K. & Chandra, Peeyush, 2013. "A mathematical model for the control of carrier-dependent infectious diseases with direct transmission and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 41-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
    2. Parsamanesh, Mahmood & Erfanian, Majid, 2018. "Global dynamics of an epidemic model with standard incidence rate and vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 192-199.
    3. Wang, Jingjing & Zheng, Hongchan & Jia, Yunfeng, 2021. "Dynamical analysis on a bacteria-phages model with delay and diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    5. Xin Jiang, 2021. "Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates," Mathematics, MDPI, vol. 9(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:610-621. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.