IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i4p348-d222288.html
   My bibliography  Save this article

Fractional Order Complexity Model of the Diffusion Signal Decay in MRI

Author

Listed:
  • Richard L. Magin

    (Department of Bioengineering at University of Illinois at Chicago, Chicago, IL 60607, USA)

  • Hamid Karani

    (Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA)

  • Shuhong Wang

    (Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, China)

  • Yingjie Liang

    (Institute of Soft Matter Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, China)

Abstract

Fractional calculus models are steadily being incorporated into descriptions of diffusion in complex, heterogeneous materials. Biological tissues, when viewed using diffusion-weighted, magnetic resonance imaging (MRI), hinder and restrict the diffusion of water at the molecular, sub-cellular, and cellular scales. Thus, tissue features can be encoded in the attenuation of the observed MRI signal through the fractional order of the time- and space-derivatives. Specifically, in solving the Bloch-Torrey equation, fractional order imaging biomarkers are identified that connect the continuous time random walk model of Brownian motion to the structure and composition of cells, cell membranes, proteins, and lipids. In this way, the decay of the induced magnetization is influenced by the micro- and meso-structure of tissues, such as the white and gray matter of the brain or the cortex and medulla of the kidney. Fractional calculus provides new functions (Mittag-Leffler and Kilbas-Saigo) that characterize tissue in a concise way. In this paper, we describe the exponential, stretched exponential, and fractional order models that have been proposed and applied in MRI, examine the connection between the model parameters and the underlying tissue structure, and explore the potential for using diffusion-weighted MRI to extract biomarkers associated with normal growth, aging, and the onset of disease.

Suggested Citation

  • Richard L. Magin & Hamid Karani & Shuhong Wang & Yingjie Liang, 2019. "Fractional Order Complexity Model of the Diffusion Signal Decay in MRI," Mathematics, MDPI, vol. 7(4), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:348-:d:222288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/4/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/4/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuanlu & Liu, Fawang & Turner, Ian W. & Li, Tao, 2018. "Time-fractional diffusion equation for signal smoothing," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 108-116.
    2. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    2. Pereira-Alves, Felipe & Soares-Pinto, Diogo O. & Paiva, Fernando F., 2024. "NMR diffusion in restricted environment approached by a fractional Langevin model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    2. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2024. "Time–space fractional Euler–Poisson–Darboux equation with Bessel fractional derivative in infinite and finite domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 383-402.
    3. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    4. Xie, Jiaquan & Wang, Tao & Ren, Zhongkai & Zhang, Jun & Quan, Long, 2019. "Haar wavelet method for approximating the solution of a coupled system of fractional-order integral–differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 80-89.
    5. Veeresha, P. & Prakasha, D.G., 2019. "A novel technique for (2+1)-dimensional time-fractional coupled Burgers equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 324-345.
    6. Samir A. El-Tantawy & Rasool Shah & Albandari W. Alrowaily & Nehad Ali Shah & Jae Dong Chung & Sherif. M. E. Ismaeel, 2023. "A Comparative Study of the Fractional-Order Belousov–Zhabotinsky System," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    7. Derakhshan, Mohammad Hossein & Rezaei, Hamid & Marasi, Hamid Reza, 2023. "An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 315-333.
    8. Jian, Huan-Yan & Huang, Ting-Zhu & Ostermann, Alexander & Gu, Xian-Ming & Zhao, Yong-Liang, 2021. "Fast numerical schemes for nonlinear space-fractional multidelay reaction-diffusion equations by implicit integration factor methods," Applied Mathematics and Computation, Elsevier, vol. 408(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:348-:d:222288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.