Solution processes for second-order linear fractional differential equations with random inhomogeneous parts
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.03.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
- Burgos, C. & Cortés, J.-C. & Villafuerte, L. & Villanueva, R.J., 2022. "Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Corina D. Constantinescu & Jorge M. Ramirez & Wei R. Zhu, 2019. "An application of fractional differential equations to risk theory," Finance and Stochastics, Springer, vol. 23(4), pages 1001-1024, October.
- Burgos, C. & Cortés, J.-C. & Villafuerte, L. & Villanueva, R.-J., 2017. "Extending the deterministic Riemann–Liouville and Caputo operators to the random framework: A mean square approach with applications to solve random fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 305-318.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Burgos, C. & Cortés, J.-C. & Villafuerte, L. & Villanueva, R.J., 2022. "Solving random fractional second-order linear equations via the mean square Laplace transform: Theory and statistical computing," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Burgos, C. & Cortés, J.-C. & Debbouche, A. & Villafuerte, L. & Villanueva, R.-J., 2019. "Random fractional generalized Airy differential equations: A probabilistic analysis using mean square calculus," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 15-29.
- Dhama, Soniya & Abbas, Syed & Debbouche, Amar, 2020. "Doubly-weighted pseudo almost automorphic solutions for stochastic dynamic equations with Stepanov-like coefficients on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
- El-Beltagy, Mohamed & Etman, Ahmed & Maged, Sroor, 2022. "Development of a fractional Wiener-Hermite expansion for analyzing the fractional stochastic models," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Andreas S{o}jmark & Fabrice Wunderlich, 2023. "Functional CLTs for subordinated L\'evy models in physics, finance, and econometrics," Papers 2312.15119, arXiv.org, revised Jan 2024.
- Martire, Antonio Luciano, 2022. "Volterra integral equations: An approach based on Lipschitz-continuity," Applied Mathematics and Computation, Elsevier, vol. 435(C).
- Akinlar, M.A. & Inc, Mustafa & Gómez-Aguilar, J.F. & Boutarfa, B., 2020. "Solutions of a disease model with fractional white noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
- Jornet, Marc, 2021. "Beyond the hypothesis of boundedness for the random coefficient of the Legendre differential equation with uncertainties," Applied Mathematics and Computation, Elsevier, vol. 391(C).
- Kim, Hyunsoo & Sakthivel, Rathinasamy & Debbouche, Amar & Torres, Delfim F.M., 2020. "Traveling wave solutions of some important Wick-type fractional stochastic nonlinear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
- Hainaut, Donatien, 2022. "Multivariate claim processes with rough intensities: Properties and estimation," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 269-287.
- Yeftanus Antonio & Sapto Wahyu Indratno & Suhadi Wido Saputro, 2021. "Pricing of cyber insurance premiums using a Markov-based dynamic model with clustering structure," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-28, October.
More about this item
Keywords
Random differential equations; mean square calculus; Caputo fractional derivative; Gamma function; Mittag-Leffler function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:210:y:2023:i:c:p:17-48. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.