IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v202y2022icp193-205.html
   My bibliography  Save this article

An effective approach based on Smooth Composite Chebyshev Finite Difference Method and its applications to Bratu-type and higher order Lane–Emden problems

Author

Listed:
  • Aydinlik, Soner
  • Kiris, Ahmet
  • Roul, Pradip

Abstract

The Smooth Composite Chebyshev Finite Difference method is generalized for higher order initial and boundary value problems. Round-off and truncation error analyses and convergence analysis of the method are also extended to higher order. The proposed method is applied to obtain the highly precise numerical solutions of boundary or initial value problems of the Bratu and higher order Lane Emden types. To visualize the competency of the presented method, the obtained results are compared with nine different methods, namely, Bezier curve method, Adomian decomposition method, Operational matrix collocation method, Direct collocation method, Haar Wavelet Collocation, Bernstein Collocation Method, Improved decomposition method, Quartic B-Spline method and New Cubic B-spline method. The comparisons show that the presented method is highly accurate than the other numerical methods and also gets rid of the singularity of the given problems.

Suggested Citation

  • Aydinlik, Soner & Kiris, Ahmet & Roul, Pradip, 2022. "An effective approach based on Smooth Composite Chebyshev Finite Difference Method and its applications to Bratu-type and higher order Lane–Emden problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 193-205.
  • Handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:193-205
    DOI: 10.1016/j.matcom.2022.05.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422002440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.05.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Kazemi Nasab & A. Kılıçman & Z. Pashazadeh Atabakan & S. Abbasbandy, 2013. "Chebyshev Wavelet Finite Difference Method: A New Approach for Solving Initial and Boundary Value Problems of Fractional Order," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-15, December.
    2. Iqbal, Muhammad Kashif & Abbas, Muhammad & Wasim, Imtiaz, 2018. "New cubic B-spline approximation for solving third order Emden–Flower type equations," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 319-333.
    3. Ramos, J.I., 2008. "Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bengochea, Gabriel, 2014. "Algebraic approach to the Lane–Emden equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 424-430.
    2. Kumar, Ajay & Kumar, Sunil, 2022. "A study on eco-epidemiological model with fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Izadi, Mohammad, 2021. "A discontinuous finite element approximation to singular Lane-Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    4. Ishtiaq Ali & Muhammad Yaseen & Muhammad Abdullah & Sana Khan & Fethi Bin Muhammad Belgacem, 2023. "An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers’ Equation," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    5. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    6. Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
    7. Busyra Latif & Samsul Ariffin Abdul Karim & Ishak Hashim, 2021. "New Cubic B-Spline Approximation for Solving Linear Two-Point Boundary-Value Problems," Mathematics, MDPI, vol. 9(11), pages 1-13, May.
    8. Zafar, Zain Ul Abadin & Younas, Samina & Hussain, Muhammad Tanveer & Tunç, Cemil, 2021. "Fractional aspects of coupled mass-spring system," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Ramos, J.I., 2009. "Generalized decomposition methods for singular oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1149-1155.
    10. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:202:y:2022:i:c:p:193-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.