IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v401y2021ics0096300321001636.html
   My bibliography  Save this article

A discontinuous finite element approximation to singular Lane-Emden type equations

Author

Listed:
  • Izadi, Mohammad

Abstract

In this article, we develop the local discontinuous Galerkin finite element method for the numerical approximations of a class of singular second-order ordinary differential equations known as the Lane-Emden type equations equipped with initial or boundary conditions. These equations have been considered via different models that naturally appear for example in several phenomena in astrophysical science. By converting the governing equations into a first-order systems of differential equations, the approximate solution is sought in a piecewise discontinuous polynomial space while the natural upwind fluxes are used at element interfaces. The existence-uniqueness of the weak formulation is provided and the numerical stability of the method in the L∞ norm is established. Five illustrative test problems are given to demonstrate the applicability and validity of the scheme. Comparisons between the numerical results of the proposed method with existing results are carried out in order to show that the new approximation algorithm provides accurate solutions even near the singular point.

Suggested Citation

  • Izadi, Mohammad, 2021. "A discontinuous finite element approximation to singular Lane-Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
  • Handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001636
    DOI: 10.1016/j.amc.2021.126115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321001636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, J.I., 2008. "Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 400-408.
    2. Shiralashetti, S.C. & Kumbinarasaiah, S., 2017. "Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear Lane–Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 591-602.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izadi, Mohammad & Srivastava, H.M., 2021. "An efficient approximation technique applied to a non-linear Lane–Emden pantograph delay differential model," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    2. Sabir, Zulqurnain & Said, Salem Ben & Baleanu, Dumitru, 2022. "Swarming optimization to analyze the fractional derivatives and perturbation factors for the novel singular model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Yüzbaşı, Şuayip & Izadi, Mohammad, 2022. "Bessel-quasilinearization technique to solve the fractional-order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bengochea, Gabriel, 2014. "Algebraic approach to the Lane–Emden equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 424-430.
    2. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    4. Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
    5. Aydinlik, Soner & Kiris, Ahmet & Roul, Pradip, 2022. "An effective approach based on Smooth Composite Chebyshev Finite Difference Method and its applications to Bratu-type and higher order Lane–Emden problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 193-205.
    6. Ramos, J.I., 2009. "Generalized decomposition methods for singular oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1149-1155.
    7. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    8. Korkut, Sıla Övgü, 2023. "An accurate and efficient numerical solution for the generalized Burgers–Huxley equation via Taylor wavelets method: Qualitative analyses and Applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 324-341.
    9. S., Kumbinarasaiah & G., Manohara & G., Hariharan, 2023. "Bernoulli wavelets functional matrix technique for a system of nonlinear singular Lane Emden equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 133-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:401:y:2021:i:c:s0096300321001636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.