IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i2p400-408.html
   My bibliography  Save this article

Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method

Author

Listed:
  • Ramos, J.I.

Abstract

Series solutions of the Lane–Emden equation based on either a Volterra integral equation formulation or the expansion of the dependent variable in the original ordinary differential equation are presented and compared with series solutions obtained by means of integral or differential equations based on a transformation of the dependent variables. It is shown that these four series solutions are the same as those obtained by a direct application of Adomian’s decomposition method to the original differential equation, He’s homotopy perturbation technique, and Wazwaz’s two implementations of the Adomian method based on either the introduction of a new differential operator that overcomes the singularity of the Lane–Emden equation at the origin or the elimination of the first-order derivative term of the original equation. It is also shown that Adomian’s decomposition technique can be interpreted as a perturbative approach which coincides with He’s homotopy perturbation method. An iterative technique based on Picard’s fixed-point theory is also presented and its convergence is analyzed. The convergence of this iterative approach depends on the independent variable and, therefore, this technique is not as convenient as the series solutions derived by the four methods presented in this paper, He’s homotopy perturbation technique, and Adomian’s decomposition method.

Suggested Citation

  • Ramos, J.I., 2008. "Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 400-408.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:2:p:400-408
    DOI: 10.1016/j.chaos.2006.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Khaled, Kamel, 2007. "Theory and computation in singular boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 678-684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    2. Ramos, J.I., 2009. "Generalized decomposition methods for singular oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1149-1155.
    3. Bengochea, Gabriel, 2014. "Algebraic approach to the Lane–Emden equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 424-430.
    4. Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
    5. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.
    6. Aydinlik, Soner & Kiris, Ahmet & Roul, Pradip, 2022. "An effective approach based on Smooth Composite Chebyshev Finite Difference Method and its applications to Bratu-type and higher order Lane–Emden problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 193-205.
    7. Izadi, Mohammad, 2021. "A discontinuous finite element approximation to singular Lane-Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:2:p:400-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.