IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i2p1149-1155.html
   My bibliography  Save this article

Generalized decomposition methods for singular oscillators

Author

Listed:
  • Ramos, J.I.

Abstract

Generalized decomposition methods based on a Volterra integral equation, the introduction of an ordering parameter and a power series expansion of the solution in terms of the ordering parameter are developed and used to determine the solution and the frequency of oscillation of a singular, nonlinear oscillator with an odd nonlinearity. It is shown that these techniques provide solutions which are free from secularities if the unknown frequency of oscillation is also expanded in power series of the ordering parameter, require that the nonlinearities be analytic functions of their arguments, and, at leading-order, provide the same frequency of oscillation as two-level iterative techniques, the homotopy perturbation method if the constants that appear in the governing equation are expanded in power series of the ordering parameter, and modified artificial parameter – Linstedt–Poincaré procedures.

Suggested Citation

  • Ramos, J.I., 2009. "Generalized decomposition methods for singular oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1149-1155.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1149-1155
    DOI: 10.1016/j.chaos.2009.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909001179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, J.I., 2008. "Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bengochea, Gabriel, 2014. "Algebraic approach to the Lane–Emden equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 424-430.
    2. Izadi, Mohammad, 2021. "A discontinuous finite element approximation to singular Lane-Emden type equations," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    3. Ahmad Sami Bataineh & Osman Rasit Isik & Abedel-Karrem Alomari & Mohammad Shatnawi & Ishak Hashim, 2020. "An Efficient Scheme for Time-Dependent Emden-Fowler Type Equations Based on Two-Dimensional Bernstein Polynomials," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    4. Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
    5. Aydinlik, Soner & Kiris, Ahmet & Roul, Pradip, 2022. "An effective approach based on Smooth Composite Chebyshev Finite Difference Method and its applications to Bratu-type and higher order Lane–Emden problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 193-205.
    6. Amit K. Verma & Biswajit Pandit & Lajja Verma & Ravi P. Agarwal, 2020. "A Review on a Class of Second Order Nonlinear Singular BVPs," Mathematics, MDPI, vol. 8(7), pages 1-50, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:2:p:1149-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.