IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2199-d238475.html
   My bibliography  Save this article

Modeling, Simulationand Analysis of On-Board Hybrid Energy Storage Systems for Railway Applications

Author

Listed:
  • Pablo Arboleya

    (LEMUR Research Group, Department of Electrical Engineering, University of Oviedo, Campus of Gijón, 33204 Gijón, Spain)

  • Islam El-Sayed

    (LEMUR Research Group, Department of Electrical Engineering, University of Oviedo, Campus of Gijón, 33204 Gijón, Spain)

  • Bassam Mohamed

    (LEMUR Research Group, Department of Electrical Engineering, University of Oviedo, Campus of Gijón, 33204 Gijón, Spain)

  • Clement Mayet

    (SATIE—UMR CNRS 8020, Conservatoire National des Arts et Métiers, HESAM University, F-75003 Paris, France)

Abstract

In this paper, a decoupled model of a train including an on-board hybrid accumulation system is presented to be used in DC traction networks. The train and the accumulation system behavior are modeled separately, and the results are then combined in order to study the effect of the whole system on the traction electrical network. The model is designed specifically to be used with power flow solvers for planning purposes. The validation has been carried out comparing the results with other methods previously developed and also with experimental measurements. A detailed description of the power flow solver is beyond the scope of this work, but it must be remarked that the model must by used with a solver able to cope with the non-linear and non-smooth characteristics of the model. In this specific case, a modified current injection-based power flow solver has been used. The solver is able to incorporate also non-reversible substations, which are the most common devices used currently for feeding DC systems. The effect of the on-board accumulation systems on the network efficiency will be analyzed using different real scenarios.

Suggested Citation

  • Pablo Arboleya & Islam El-Sayed & Bassam Mohamed & Clement Mayet, 2019. "Modeling, Simulationand Analysis of On-Board Hybrid Energy Storage Systems for Railway Applications," Energies, MDPI, vol. 12(11), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2199-:d:238475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2199/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Jafari Kaleybar & Mostafa Golnargesi & Morris Brenna & Dario Zaninelli, 2023. "Hybrid Energy Storage System Taking Advantage of Electric Vehicle Batteries for Recovering Regenerative Braking Energy in Railway Station," Energies, MDPI, vol. 16(13), pages 1-24, July.
    2. Szymon Haładyn, 2021. "The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    3. Leszek Kasprzyk & Andrzej Tomczewski & Robert Pietracho & Agata Mielcarek & Zbigniew Nadolny & Krzysztof Tomczewski & Grzegorz Trzmiel & Juan Alemany, 2020. "Optimization of a PV-Wind Hybrid Power Supply Structure with Electrochemical Storage Intended for Supplying a Load with Known Characteristics," Energies, MDPI, vol. 13(22), pages 1-31, November.
    4. Almaksour, Khaled & Krim, Youssef & Kouassi, N’guessan & Navarro, Nicolas & François, Bruno & Letrouvé, Tony & Saudemont, Christophe & Taunay, Lionel & Robyns, Benoit, 2021. "Comparison of dynamic models for a DC railway electrical network including an AC/DC bi-directional power station," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 244-266.
    5. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2199-:d:238475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.