IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v152y2021ics0960077921007219.html
   My bibliography  Save this article

A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative

Author

Listed:
  • Hashemi, M.S.

Abstract

This work is devoted to the time fractional differential equations (TFDEs) with the Atangana-Baleanu-Riemann (ABR) fractional derivative and their analytical solutions. We generalize the Nucci’s reduction method to find the exact solutions of such equations. Different general solutions of nonlinear ABR fractional differential equations besides first integrals are discussed in different types such as soliton and implicit solutions.

Suggested Citation

  • Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007219
    DOI: 10.1016/j.chaos.2021.111367
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921007219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Shamy, E.F., 2005. "Dust-ion-acoustic solitary waves in a hot magnetized dusty plasma with charge fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 665-674.
    2. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    3. Sahadevan, R. & Prakash, P., 2017. "On Lie symmetry analysis and invariant subspace methods of coupled time fractional partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 107-120.
    4. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    5. Rus, Francisco & Villatoro, Francisco R., 2007. "Padé numerical method for the Rosenau–Hyman compacton equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 188-192.
    6. Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
    7. Hajiketabi, M. & Abbasbandy, S. & Casas, F., 2018. "The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation in arbitrary domains," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 223-243.
    8. Abbasbandy, Saeid & Kazem, Saeed & Alhuthali, Mohammed S. & Alsulami, Hamed H., 2015. "Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 31-40.
    9. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Hashemi, M.S. & Inc, Mustafa & Yusuf, Abdullahi, 2020. "On three-dimensional variable order time fractional chaotic system with nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    11. Estévez, P.G. & Kuru, Ş. & Negro, J. & Nieto, L.M., 2009. "Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2031-2040.
    12. Baseri, A. & Abbasbandy, S. & Babolian, E., 2018. "A collocation method for fractional diffusion equation in a long time with Chebyshev functions," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 55-65.
    13. Kheybari, Samad & Darvishi, Mohammad Taghi & Hashemi, Mir Sajjad, 2019. "Numerical simulation for the space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turkyilmazoglu, Mustafa & Altanji, Mohamed, 2023. "Fractional models of falling object with linear and quadratic frictional forces considering Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
    2. Kheybari, Samad, 2021. "Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 66-85.
    3. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    5. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    6. Shoaib, Muhammad & Abbasi, Aqsa Zafar & Raja, Muhammad Asif Zahoor & Nisar, Kottakkaran Sooppy, 2022. "A design of predictive computational network for the analysis of fractional epidemical predictor-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Hassan Eltayeb & Said Mesloub & Yahya T. Abdalla & Adem Kılıçman, 2019. "A Note on Double Conformable Laplace Transform Method and Singular One Dimensional Conformable Pseudohyperbolic Equations," Mathematics, MDPI, vol. 7(10), pages 1-21, October.
    9. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    10. Stanislav Yu. Lukashchuk, 2022. "On the Property of Linear Autonomy for Symmetries of Fractional Differential Equations and Systems," Mathematics, MDPI, vol. 10(13), pages 1-17, July.
    11. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    12. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    13. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    14. Mohammad Abolhasani & Saeid Abbasbandy & Tofigh Allahviranloo, 2017. "A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains," Mathematics, MDPI, vol. 5(2), pages 1-15, May.
    15. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    16. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    17. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    18. Mehmood, Ammara & Raja, Muhammad Asif Zahoor, 2022. "Fuzzy-weighted differential evolution computing paradigm for fractional order nonlinear wiener systems," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    20. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:152:y:2021:i:c:s0960077921007219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.