IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v336y2018icp215-230.html
   My bibliography  Save this article

A new approach for space-time fractional partial differential equations by residual power series method

Author

Listed:
  • Aylin Bayrak, Mine
  • Demir, Ali

Abstract

In this paper, the approximate analytic solution of any order space-time fractional differential equations is constructed by means of semi-analytical method, named as residual power series method (RPSM). The first step is to reduce space-time fractional differential equation to either a space fractional differential equations or a time fractional differential equations before applying RSPM. The main step is to obtain fractional power series solutions by RSPM. At the final step, it is shown that RPSM is very efficacious, plain and powerful for obtaining the solution of any-order space-time fractional differential equations in the form of fractional power series by illustrative examples.

Suggested Citation

  • Aylin Bayrak, Mine & Demir, Ali, 2018. "A new approach for space-time fractional partial differential equations by residual power series method," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 215-230.
  • Handle: RePEc:eee:apmaco:v:336:y:2018:i:c:p:215-230
    DOI: 10.1016/j.amc.2018.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318303503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon, 2016. "On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 948-956.
    2. El-Ajou, Ahmad & Abu Arqub, Omar & Al-Smadi, Mohammed, 2015. "A general form of the generalized Taylor’s formula with some applications," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 851-859.
    3. El-Ajou, Ahmad & Abu Arqub, Omar & Momani, Shaher & Baleanu, Dumitru & Alsaedi, Ahmed, 2015. "A novel expansion iterative method for solving linear partial differential equations of fractional order," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 119-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kheybari, Samad, 2021. "Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 66-85.
    2. Muhammad Imran Liaqat & Ali Akgül & Hanaa Abu-Zinadah, 2023. "Analytical Investigation of Some Time-Fractional Black–Scholes Models by the Aboodh Residual Power Series Method," Mathematics, MDPI, vol. 11(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arqub, Omar Abu & Maayah, Banan, 2019. "Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – Fractional Volterra integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 394-402.
    2. Mohammed Shqair & Ahmad El-Ajou & Mazen Nairat, 2019. "Analytical Solution for Multi-Energy Groups of Neutron Diffusion Equations by a Residual Power Series Method," Mathematics, MDPI, vol. 7(7), pages 1-20, July.
    3. Abu Arqub, Omar & Al-Smadi, Mohammed, 2018. "Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 161-167.
    4. Omar Abu Arqub & Mohamed S. Osman & Abdel-Haleem Abdel-Aty & Abdel-Baset A. Mohamed & Shaher Momani, 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method," Mathematics, MDPI, vol. 8(6), pages 1-15, June.
    5. Alquran, Marwan & Yousef, Feras & Alquran, Farah & Sulaiman, Tukur A. & Yusuf, Abdullahi, 2021. "Dual-wave solutions for the quadratic–cubic conformable-Caputo time-fractional Klein–Fock–Gordon equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 62-76.
    6. Hamid, M. & Usman, M. & Haq, R.U. & Wang, W., 2020. "A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    10. Nataliia Kinash & Jaan Janno, 2019. "An Inverse Problem for a Generalized Fractional Derivative with an Application in Reconstruction of Time- and Space-Dependent Sources in Fractional Diffusion and Wave Equations," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    11. Fouladi, Somayeh & Dahaghin, Mohammad Shafi, 2022. "Numerical investigation of the variable-order fractional Sobolev equation with non-singular Mittag–Leffler kernel by finite difference and local discontinuous Galerkin methods," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Mohammed, Pshtiwan Othman & Kürt, Cemaliye & Abdeljawad, Thabet, 2022. "Bivariate discrete Mittag-Leffler functions with associated discrete fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    15. Abdalla, Bahaaeldin & Abdeljawad, Thabet, 2019. "On the oscillation of Caputo fractional differential equations with Mittag–Leffler nonsingular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 173-177.
    16. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    17. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    18. Shah, Kamal & Alqudah, Manar A. & Jarad, Fahd & Abdeljawad, Thabet, 2020. "Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    19. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Nisar, Kottakkaran Sooppy & Singh, Jagdev, 2020. "Fractional modified Kawahara equation with Mittag–Leffler law," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    20. Abdeljawad, Thabet, 2019. "Fractional difference operators with discrete generalized Mittag–Leffler kernels," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 315-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:336:y:2018:i:c:p:215-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.