IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/3498363.html
   My bibliography  Save this article

Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization

Author

Listed:
  • Xiuli Wu
  • Yongquan Zhou
  • Yuting Lu

Abstract

Water wave optimization (WWO) is a novel metaheuristic method that is based on shallow water wave theory, which has simple structure, easy realization, and good performance even with a small population. To improve the convergence speed and calculation precision even further, this paper on elite opposition-based strategy water wave optimization (EOBWWO) is proposed, and it has been applied for function optimization and structure engineering design problems. There are three major optimization strategies in the improvement: elite opposition-based (EOB) learning strategy enhances the diversity of population, local neighborhood search strategy is introduced to enhance local search in breaking operation, and improved propagation operator provides the improved algorithm with a better balance between exploration and exploitation. EOBWWO algorithm is verified by using 20 benchmark functions and two structure engineering design problems and the performance of EOBWWO is compared against those of the state-of-the-art algorithms. Experimental results show that the proposed algorithm has faster convergence speed, higher calculation precision, with the exact solution being even obtained on some benchmark functions, and a higher degree of stability than other comparative algorithms.

Suggested Citation

  • Xiuli Wu & Yongquan Zhou & Yuting Lu, 2017. "Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-25, January.
  • Handle: RePEc:hin:jnlmpe:3498363
    DOI: 10.1155/2017/3498363
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3498363.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/3498363.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3498363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Zheping & Zhang, Jinzhong & Tang, Jialing, 2021. "Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 192-241.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:3498363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.