IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v174y2020icp76-101.html
   My bibliography  Save this article

A dynamic adaptive firefly algorithm with globally orientation

Author

Listed:
  • Liu, Jingsen
  • Mao, Yinan
  • Liu, Xiaozhen
  • Li, Yu

Abstract

This paper proposes a dynamic adaptive firefly algorithm to overcome the disadvantages of the standard firefly algorithm, to improve the convergence rate and solution precision, and to avoid the premature algorithm trapping at the local extreme. It has a global-oriented moving mechanism and can dynamically adjust the step size and attractiveness. First, through the adaptive deviation degree strategy of optimal distance combining with the Gaussian distribution, it optimizes the fixed step-factor to balance the exploration and excavation capabilities of the algorithm and improves the diversity of the population. Second, minimum attractiveness is introduced to the algorithm, and is adaptively changed with the number of iterations, which can avoid random walk due to lack of traction between fireflies. Finally, this paper improves the mobility mechanism based on the position of the current optimal firefly. It enables firefly move with global orientation and also expands the sharing of information between fireflies to improve the overall evolutionary optimization performance of the algorithm. Theoretical analysis proves the convergence and time complexity of the improved algorithm. The simulation results of several test functions and engineering constraint optimization problems show that the improved algorithm has better solution performance, and clearly improves the convergence speed and solution accuracy.

Suggested Citation

  • Liu, Jingsen & Mao, Yinan & Liu, Xiaozhen & Li, Yu, 2020. "A dynamic adaptive firefly algorithm with globally orientation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 76-101.
  • Handle: RePEc:eee:matcom:v:174:y:2020:i:c:p:76-101
    DOI: 10.1016/j.matcom.2020.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Shuhao & Zhu, Shenglong & Ma, Yan & Mao, Demei, 2015. "A variable step size firefly algorithm for numerical optimization," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 214-220.
    2. Gherbi, Yamina Ahlem & Bouzeboudja, Hamid & Gherbi, Fatima Zohra, 2016. "The combined economic environmental dispatch using new hybrid metaheuristic," Energy, Elsevier, vol. 115(P1), pages 468-477.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    2. Xin-gang, Zhao & Ze-qi, Zhang & Yi-min, Xie & Jin, Meng, 2020. "Economic-environmental dispatch of microgrid based on improved quantum particle swarm optimization," Energy, Elsevier, vol. 195(C).
    3. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Chunyuan Zhang & Pengyu Chen & Fangling Jiang & Jinsen Xie & Tao Yu, 2023. "Fault Diagnosis of Nuclear Power Plant Based on Sparrow Search Algorithm Optimized CNN-LSTM Neural Network," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    6. B. Koti Reddy & Amit Kumar Singh, 2021. "Optimal Operation of a Photovoltaic Integrated Captive Cogeneration Plant with a Utility Grid Using Optimization and Machine Learning Prediction Methods," Energies, MDPI, vol. 14(16), pages 1-28, August.
    7. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    8. Mousavi, Yashar & Alfi, Alireza, 2018. "Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 202-215.
    9. Wang, Guibin & Zha, Yongxing & Wu, Ting & Qiu, Jing & Peng, Jian-chun & Xu, Gang, 2020. "Cross entropy optimization based on decomposition for multi-objective economic emission dispatch considering renewable energy generation uncertainties," Energy, Elsevier, vol. 193(C).
    10. Hossein Nourianfar & Hamdi Abdi, 2022. "Environmental/Economic Dispatch Using a New Hybridizing Algorithm Integrated with an Effective Constraint Handling Technique," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    11. Abdulaziz Almalaq & Tawfik Guesmi & Saleh Albadran, 2023. "A Hybrid Chaotic-Based Multiobjective Differential Evolution Technique for Economic Emission Dispatch Problem," Energies, MDPI, vol. 16(12), pages 1-34, June.
    12. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    13. Abubaker Younis & Fatima Belabbes & Petru Adrian Cotfas & Daniel Tudor Cotfas, 2024. "Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model," Forecasting, MDPI, vol. 6(2), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:174:y:2020:i:c:p:76-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.