IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i2p20-377d1399273.html
   My bibliography  Save this article

Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model

Author

Listed:
  • Abubaker Younis

    (Electronics and Computers Department, Transilvania University of Brașov, 500036 Braşov, Romania)

  • Fatima Belabbes

    (Department of Electronics, Djillali Liabes University, Sidi Bel Abbes 22000, Algeria)

  • Petru Adrian Cotfas

    (Electronics and Computers Department, Transilvania University of Brașov, 500036 Braşov, Romania)

  • Daniel Tudor Cotfas

    (Electronics and Computers Department, Transilvania University of Brașov, 500036 Braşov, Romania)

Abstract

This study introduces a novel adjustment to the firefly algorithm (FA) through the integration of rare instances of cannibalism among fireflies, culminating in the development of the honeybee mating-based firefly algorithm (HBMFA). The IEEE Congress on Evolutionary Computation (CEC) 2005 benchmark functions served as a rigorous testing ground to evaluate the efficacy of the new algorithm in diverse optimization scenarios. Moreover, thorough statistical analyses, including two-sample t -tests and fitness function evaluation analysis, the algorithm’s optimization capabilities were robustly validated. Additionally, the coefficient of determination, used as an objective function, was utilized with real-world wind speed data from the SR-25 station in Brazil to assess the algorithm’s applicability in modeling wind speed parameters. Notably, HBMFA achieved superior solution accuracy, with enhancements averaging 0.025% compared to conventional FA, despite a moderate increase in execution time of approximately 18.74%. Furthermore, this dominance persisted when the algorithm’s performance was compared with other common optimization algorithms. However, some limitations exist, including the longer execution time of HBMFA, raising concerns about its practical applicability in scenarios where computational efficiency is critical. Additionally, while the new algorithm demonstrates improvements in fitness values, establishing the statistical significance of these differences compared to FA is not consistently achieved, which warrants further investigation. Nevertheless, the added value of this work lies in advancing the state-of-the-art in optimization algorithms, particularly in enhancing solution accuracy for critical engineering applications.

Suggested Citation

  • Abubaker Younis & Fatima Belabbes & Petru Adrian Cotfas & Daniel Tudor Cotfas, 2024. "Utilizing the Honeybees Mating-Inspired Firefly Algorithm to Extract Parameters of the Wind Speed Weibull Model," Forecasting, MDPI, vol. 6(2), pages 1-21, May.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:20-377:d:1399273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/2/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/2/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
    2. Makhloufi, Saida & Mekhaldi, Abdelouahab & Teguar, Madjid, 2016. "Three powerful nature-inspired algorithms to optimize power flow in Algeria's Adrar power system," Energy, Elsevier, vol. 116(P1), pages 1117-1130.
    3. Fister, Iztok & Perc, Matjaž & Kamal, Salahuddin M. & Fister, Iztok, 2015. "A review of chaos-based firefly algorithms: Perspectives and research challenges," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 155-165.
    4. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    5. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.
    6. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Yu, Shuhao & Zhu, Shenglong & Ma, Yan & Mao, Demei, 2015. "A variable step size firefly algorithm for numerical optimization," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 214-220.
    8. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    9. Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    2. Akpan, Anthony E. & Ben, Ubong C. & Ekwok, Stephen E. & Okolie, Chukwuma J. & Epuh, Emeka E. & Julzarika, Atriyon & Othman, Abdullah & Eldosouky, Ahmed M., 2024. "Technical and performance assessments of wind turbines in low wind speed areas using numerical, metaheuristic and remote sensing procedures," Applied Energy, Elsevier, vol. 357(C).
    3. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Ninness, Brett, 2024. "Design of fractional-order hammerstein control auto-regressive model for heat exchanger system identification: Treatise on fuzzy-evolutionary computing," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    5. Kostić, Srđan & Vasović, Nebojša & Sunarić, Duško, 2015. "A new approach to grid search method in slope stability analysis using Box–Behnken statistical design," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 425-437.
    6. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    7. Mojtaba Qolipour & Ali Mostafaeipour & Mohammad Saidi-Mehrabad & Hamid R Arabnia, 2019. "Prediction of wind speed using a new Grey-extreme learning machine hybrid algorithm: A case study," Energy & Environment, , vol. 30(1), pages 44-62, February.
    8. Jing-Li Fan & Zezheng Li & Xi Huang & Kai Li & Xian Zhang & Xi Lu & Jianzhong Wu & Klaus Hubacek & Bo Shen, 2023. "A net-zero emissions strategy for China’s power sector using carbon-capture utilization and storage," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    10. Rahmani, Shima & Amjady, Nima, 2017. "A new optimal power flow approach for wind energy integrated power systems," Energy, Elsevier, vol. 134(C), pages 349-359.
    11. Cuenca, Juan J. & Daly, Hannah E. & Hayes, Barry P., 2023. "Sharing the grid: The key to equitable access for small-scale energy generation," Applied Energy, Elsevier, vol. 349(C).
    12. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    13. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    14. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    15. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    16. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    17. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    18. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    19. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    20. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:20-377:d:1399273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.