IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v173y2020icp1-15.html
   My bibliography  Save this article

Simulations of the rectangular wave-guide pattern in the complex Maxwell vorticity equations by lattice Boltzmann method

Author

Listed:
  • Liu, Yanhong
  • Wang, Huimin

Abstract

In this paper, a lattice Boltzmann model for solving three-dimensional complex Maxwell vorticity equations is presented. Different from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a three-dimensional spatiotemporal space, and we have also given the stability conditions of this complex model and the expression of the equilibrium distribution function. Numerical results reproduce the phenomena of the rectangular wave-guide pattern in complex Maxwell equations, and these numerical results do accord with classical ones.

Suggested Citation

  • Liu, Yanhong & Wang, Huimin, 2020. "Simulations of the rectangular wave-guide pattern in the complex Maxwell vorticity equations by lattice Boltzmann method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 173(C), pages 1-15.
  • Handle: RePEc:eee:matcom:v:173:y:2020:i:c:p:1-15
    DOI: 10.1016/j.matcom.2020.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420300239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javadzadegan, Ashkan & Joshaghani, Mohammad & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2020. "Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Baboolal, S. & Bharuthram, R., 2007. "Two-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations: Shock and soliton simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(1), pages 3-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lioua Kolsi & Fatih Selimefendigil & Mohamed Omri & Hatem Rmili & Badreddine Ayadi & Chemseddine Maatki & Badr M. Alshammari, 2023. "CFD Study of MHD and Elastic Wall Effects on the Nanofluid Convection Inside a Ventilated Cavity Including Perforated Porous Object," Mathematics, MDPI, vol. 11(3), pages 1-21, January.
    2. Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Su, Yan, 2024. "A mesoscale non-dimensional lattice Boltzmann model for self-sustained structures of swimming microbial suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    4. Hadipeykani, Majid & Aghadavoudi, Farshid & Toghraie, Davood, 2020. "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:173:y:2020:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.