Finite element approach of the buried pipeline on tensionless foundation under random ground excitation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2019.09.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lanzano, Giovanni & Salzano, Ernesto & de Magistris, Filippo Santucci & Fabbrocino, Giovanni, 2013. "Seismic vulnerability of natural gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 73-80.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abubakr E. S. Musa & Madyan A. Al-Shugaa & Amin Al-Fakih, 2022. "Free–Free Beam Resting on Tensionless Elastic Foundation Subjected to Patch Load," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Filippo Santucci de Magistris & Giovanni Lanzano & Giovanni Forte & Giovanni Fabbrocino, 2014. "A peak acceleration threshold for soil liquefaction: lessons learned from the 2012 Emilia earthquake (Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1069-1094, November.
- Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Rossi, Lorenzo & Casson Moreno, Valeria & Landucci, Gabriele, 2022. "Vulnerability assessment of process pipelines affected by flood events," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Mao, Ding & Wang, Peng & Fang, Yi-Ping & Ni, Long, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Applied Energy, Elsevier, vol. 369(C).
- Cavalieri, Francesco, 2020. "Seismic risk assessment of natural gas networks with steady-state flow computation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
- Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Necci, Amos & Argenti, Francesca & Landucci, Gabriele & Cozzani, Valerio, 2014. "Accident scenarios triggered by lightning strike on atmospheric storage tanks," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 30-46.
- Chen, Xing-lin & Huang, Zong-hou & Ge, Fan-liang & Lin, Wei-dong & Yang, Fu-qiang, 2024. "A probabilistic analysis method for evaluating the safety & resilience of urban gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Marroni, Giulia & Casini, Leonardo & Bartolucci, Andrea & Kuipers, Sanneke & Casson Moreno, Valeria & Landucci, Gabriele, 2024. "Development of fragility models for process equipment affected by physical security attacks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Yu, Weichao & Wen, Kai & Min, Yuan & He, Lei & Huang, Weihe & Gong, Jing, 2018. "A methodology to quantify the gas supply capacity of natural gas transmission pipeline system using reliability theory," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 128-141.
- Hileman, Jacob D. & Angst, Mario & Scott, Tyler A. & Sundström, Emma, 2021. "Recycled text and risk communication in natural gas pipeline environmental impact assessments," Energy Policy, Elsevier, vol. 156(C).
More about this item
Keywords
Buried pipeline; Dynamic elastoplastic; Kanai–Tajimi model; Finite element; Norm L2 of displacement and stress errors; Pasternak foundation; Winkler foundation;All these keywords.
JEL classification:
- L2 - Industrial Organization - - Firm Objectives, Organization, and Behavior
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:169:y:2020:i:c:p:149-165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.