IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i22p5663-5672.html
   My bibliography  Save this article

Fractional trajectories: Decorrelation versus friction

Author

Listed:
  • Svenkeson, A.
  • Beig, M.T.
  • Turalska, M.
  • West, B.J.
  • Grigolini, P.

Abstract

The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation of a fractional trajectory, that being an average over an ensemble of stochastic trajectories. Heretofore what has been interpreted as intrinsic friction, a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. We apply the general theory developed herein to the Lotka–Volterra ecological model, providing new insight into the final equilibrium state. The relaxation time to achieve this state is also considered.

Suggested Citation

  • Svenkeson, A. & Beig, M.T. & Turalska, M. & West, B.J. & Grigolini, P., 2013. "Fractional trajectories: Decorrelation versus friction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5663-5672.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:22:p:5663-5672
    DOI: 10.1016/j.physa.2013.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113006389
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Škovránek, Tomáš & Podlubny, Igor & Petráš, Ivo, 2012. "Modeling of the national economies in state-space: A fractional calculus approach," Economic Modelling, Elsevier, vol. 29(4), pages 1322-1327.
    2. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    3. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    4. Narahari Achar, B.N. & Hanneken, John W. & Clarke, T., 2002. "Response characteristics of a fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 275-288.
    5. Tofighi, Ali, 2003. "The intrinsic damping of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 29-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. West, Bruce J., 2015. "Exact solution to fractional logistic equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 103-108.
    2. Tenreiro Machado, J.A., 2015. "Generalized convolution," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 34-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    2. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
    3. Tomas Skovranek, 2019. "The Mittag-Leffler Fitting of the Phillips Curve," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    4. Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
    5. Tarasova, Valentina V. & Tarasov, Vasily E., 2017. "Logistic map with memory from economic model," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 84-91.
    6. Inés Tejado & Emiliano Pérez & Duarte Valério, 2020. "Fractional Derivatives for Economic Growth Modelling of the Group of Twenty: Application to Prediction," Mathematics, MDPI, vol. 8(1), pages 1-21, January.
    7. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    8. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    9. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    10. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    11. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    12. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    13. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    14. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    15. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    16. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    17. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    19. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    20. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:22:p:5663-5672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.