IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v177y2018i2d10.1007_s10957-018-1260-2.html
   My bibliography  Save this article

Optimization of Mayer Problem with Sturm–Liouville-Type Differential Inclusions

Author

Listed:
  • Elimhan N. Mahmudov

    (Istanbul Technical University
    Institute of Control Systems)

Abstract

The present paper studies a new class of problems of optimal control theory with Sturm–Liouville-type differential inclusions involving second-order linear self-adjoint differential operators. Our main goal is to derive the optimality conditions of Mayer problem for differential inclusions with initial point constraints. By using the discretization method guaranteeing transition to continuous problem, the discrete and discrete-approximation inclusions are investigated. Necessary and sufficient conditions, containing both the Euler–Lagrange and Hamiltonian-type inclusions and “transversality” conditions are derived. The idea for obtaining optimality conditions of Mayer problem is based on applying locally adjoint mappings. This approach provides several important equivalence results concerning locally adjoint mappings to Sturm–Liouville-type set-valued mappings. The result strengthens and generalizes to the problem with a second-order non-self-adjoint differential operator; a suitable choice of coefficients then transforms this operator to the desired Sturm–Liouville-type problem. In particular, if a positive-valued, scalar function specific to Sturm–Liouville differential inclusions is identically equal to one, we have immediately the optimality conditions for the second-order discrete and differential inclusions. Furthermore, practical applications of these results are demonstrated by optimization of some “linear” optimal control problems for which the Weierstrass–Pontryagin maximum condition is obtained.

Suggested Citation

  • Elimhan N. Mahmudov, 2018. "Optimization of Mayer Problem with Sturm–Liouville-Type Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 345-375, May.
  • Handle: RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-018-1260-2
    DOI: 10.1007/s10957-018-1260-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1260-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1260-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. K. Chang & W. T. Li, 2006. "Controllability of Second-Order Differential and Integro-Differential Inclusions in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 129(1), pages 77-87, April.
    2. Dimplekumar N. Chalishajar, 2012. "Controllability of Second Order Impulsive Neutral Functional Differential Inclusions with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 672-684, August.
    3. M. Benchohra & S. K. Ntouyas, 2001. "Controllability for an Infinite-Time Horizon of Second-Order Differential Inclusions in Banach Spaces with Nonlocal Conditions," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 85-98, April.
    4. G. Arthi & K. Balachandran, 2012. "Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 799-813, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nesrine Bouhali & Dalila Azzam-Laouir & Manuel D. P. Monteiro Marques, 2022. "Optimal Control of an Evolution Problem Involving Time-Dependent Maximal Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 59-91, July.
    2. Elimhan N. Mahmudov, 2022. "Optimization of Higher-Order Differential Inclusions with Special Boundary Value Conditions," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 36-55, January.
    3. Elimhan N. Mahmudov, 2020. "Infimal Convolution and Duality in Problems with Third-Order Discrete and Differential Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 781-809, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elimhan N. Mahmudov, 2022. "Optimization of Higher-Order Differential Inclusions with Special Boundary Value Conditions," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 36-55, January.
    2. Eduardo Hernández & Donal O’Regan & Krishnan Balachandran, 2013. "Comments on Some Recent Results on Controllability of Abstract Differential Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 292-295, October.
    3. Hamdy M. Ahmed & Mahmoud M. El-Borai & Hassan M. El-Owaidy & Ahmed S. Ghanem, 2019. "Existence Solution and Controllability of Sobolev Type Delay Nonlinear Fractional Integro-Differential System," Mathematics, MDPI, vol. 7(1), pages 1-14, January.
    4. G. Arthi & K. Balachandran, 2012. "Controllability of Damped Second-Order Impulsive Neutral Functional Differential Systems with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 799-813, March.
    5. Jia Wei He & Yong Liang & Bashir Ahmad & Yong Zhou, 2019. "Nonlocal Fractional Evolution Inclusions of Order α ∈ (1,2)," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    6. Dimplekumar N. Chalishajar & Kulandhivel Karthikeyan & Annamalai Anguraj, 2016. "Existence of Semi Linear Impulsive Neutral Evolution Inclusions with Infinite Delay in Frechet Spaces," Mathematics, MDPI, vol. 4(2), pages 1-17, April.
    7. Liang, Jin & Yang, He, 2015. "Controllability of fractional integro-differential evolution equations with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 20-29.
    8. Y. K. Chang & W. T. Li, 2007. "Controllability of Functional Integro-Differential Inclusions with an Unbounded Delay," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 125-142, January.
    9. B. Liu, 2004. "Controllability of Neutral Functional Differential and Integrodifferential Inclusions with Infinite Delay," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 573-593, December.
    10. Dimplekumar Chalishajar & Annamalai Anguraj & Kandasamy Malar & Kulandhivel Karthikeyan, 2016. "A Study of Controllability of Impulsive Neutral Evolution Integro-Differential Equations with State-Dependent Delay in Banach Spaces," Mathematics, MDPI, vol. 4(4), pages 1-16, October.
    11. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    12. Martina Pavlačková & Valentina Taddei, 2022. "Mild Solutions of Second-Order Semilinear Impulsive Differential Inclusions in Banach Spaces," Mathematics, MDPI, vol. 10(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-018-1260-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.