IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v98y2017icp216-219.html
   My bibliography  Save this article

An analytical criterion for jump phenomena in fractional Duffing oscillators

Author

Listed:
  • Liu, Q.X.
  • Liu, J.K.
  • Chen, Y.M.

Abstract

This paper presents an analytical study on a general kind of fractional Duffing oscillators subjected to harmonic excitations. The Caputo-type fractional derivatives are transformed into improper double integrals by employing a memory-free principle. The integrals and the cubic stiffness are further handled by equivalent linearization. An equivalent linear equation is then deduced, based on which amplitude–frequency responses can be obtained analytically. According to the attained amplitude–frequency curve, we present an analytical criterion for jump phenomena of the oscillating amplitude due to varying excitation frequency. The analytical results are validated by numerical examples.

Suggested Citation

  • Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
  • Handle: RePEc:eee:chsofr:v:98:y:2017:i:c:p:216-219
    DOI: 10.1016/j.chaos.2017.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yongge & Xu, Wei & Gu, Xudong & Sun, Yahui, 2015. "Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 77(C), pages 190-204.
    2. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2015. "Non-diminishing relative error of the predictor–corrector algorithm for certain fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 10-19.
    3. Balescu, R., 2007. "V-Langevin equations, continuous time random walks and fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 62-80.
    4. Achar, B.N.Narahari & Hanneken, J.W. & Enck, T. & Clarke, T., 2001. "Dynamics of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 297(3), pages 361-367.
    5. Tofighi, Ali, 2003. "The intrinsic damping of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 29-34.
    6. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jue & Yuan, Wei-bin & Li, Long-yuan, 2021. "Cross-sectional flattening-induced nonlinear damped vibration of elastic tubes subjected to transverse loads," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Valentine Kim & Roman Parovik, 2020. "Mathematical Model of Fractional Duffing Oscillator with Variable Memory," Mathematics, MDPI, vol. 8(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    2. Balachandran, K. & Govindaraj, V. & Rivero, M. & Trujillo, J.J., 2015. "Controllability of fractional damped dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 66-73.
    3. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    5. Mishra, Shalabh Kumar & Upadhyay, Dharmendra Kumar & Gupta, Maneesha, 2018. "An approach to improve the performance of fractional-order sinusoidal oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 126-135.
    6. Jiang, Wei & Chen, Zhong & Hu, Ning & Song, Haiyang & Yang, Zhaohong, 2020. "Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    7. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    8. Tian, Yan & Zhong, Lin-Feng & He, Gui-Tian & Yu, Tao & Luo, Mao-Kang & Stanley, H. Eugene, 2018. "The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 845-856.
    9. Ning, Xin & Ma, Yanyan & Li, Shuai & Zhang, Jingmin & Li, Yifei, 2018. "Response of non-linear oscillator driven by fractional derivative term under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 102-107.
    10. Lin, Guoxing, 2018. "General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 86-100.
    11. Yifan Zhang & Tianzeng Li & Zhiming Zhang & Yu Wang, 2022. "Novel Methods for the Global Synchronization of the Complex Dynamical Networks with Fractional-Order Chaotic Nodes," Mathematics, MDPI, vol. 10(11), pages 1-22, June.
    12. Pagnini, Gianni, 2014. "Short note on the emergence of fractional kinetics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 29-34.
    13. Zheng, Yunying & Zhao, Zhengang & Cui, Yanfen, 2019. "The discontinuous Galerkin finite element approximation of the multi-order fractional initial problems," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 257-269.
    14. Kingni, Sifeu Takougang & Pham, Viet-Thanh & Jafari, Sajad & Woafo, Paul, 2017. "A chaotic system with an infinite number of equilibrium points located on a line and on a hyperbola and its fractional-order form," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 209-218.
    15. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    16. Michal Fečkan & T. Sathiyaraj & JinRong Wang, 2020. "Synchronization of Butterfly Fractional Order Chaotic System," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    17. Guoxing Lin, 2018. "Analysis of PFG Anomalous Diffusion via Real-Space and Phase-Space Approaches," Mathematics, MDPI, vol. 6(2), pages 1-16, January.
    18. Svenkeson, A. & Beig, M.T. & Turalska, M. & West, B.J. & Grigolini, P., 2013. "Fractional trajectories: Decorrelation versus friction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5663-5672.
    19. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong, 2019. "Chaotic analysis and adaptive synchronization for a class of fractional order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 33-42.
    20. Chakraborty, Arkaprovo & Veeresha, P., 2024. "Investigating the dynamics, synchronization and control of chaos within a transformed fractional Samardzija–Greller framework," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:98:y:2017:i:c:p:216-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.