IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p154-167.html
   My bibliography  Save this article

Approximate forward-backward algorithm for a switching linear Gaussian model

Author

Listed:
  • Hammer, Hugo
  • Tjelmeland, Håkon

Abstract

A hidden Markov model with two hidden layers is considered. The bottom layer is a Markov chain and given this the variables in the second hidden layer are assumed conditionally independent and Gaussian distributed. The observation process is Gaussian with mean values that are linear functions of the second hidden layer. The forward-backward algorithm is not directly feasible for this model as the recursions result in a mixture of Gaussian densities where the number of terms grows exponentially with the length of the Markov chain. By dropping the less important Gaussian terms an approximate forward-backward algorithm is defined. Thereby one gets a computationally feasible algorithm that generates samples from an approximation to the conditional distribution of the unobserved layers given the data. The approximate algorithm is also used as a proposal distribution in a Metropolis-Hastings setting, and this gives high acceptance rates and good convergence and mixing properties. The model considered is related to what is known as switching linear dynamical systems. The proposed algorithm can in principle also be used for these models and the potential use of the algorithm is therefore large. In simulation examples the algorithm is used for the problem of seismic inversion. The simulations demonstrate the effectiveness and quality of the proposed approximate algorithm.

Suggested Citation

  • Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:154-167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00252-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    2. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    3. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    4. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    5. Bulla, Jan & Bulla, Ingo & Nenadic, Oleg, 2010. "hsmm -- An R package for analyzing hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 611-619, March.
    6. Scott S. L., 2002. "Bayesian Methods for Hidden Markov Models: Recursive Computing in the 21st Century," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 337-351, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
    2. Broto, Baptiste & Bachoc, François & Depecker, Marine & Martinez, Jean-Marc, 2019. "Sensitivity indices for independent groups of variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 19-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
    2. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
    3. Karamé, Frédéric, 2018. "A new particle filtering approach to estimate stochastic volatility models with Markov-switching," Econometrics and Statistics, Elsevier, vol. 8(C), pages 204-230.
    4. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
    5. Kim, Chang-Jin & Kim, Jaeho, 2013. "Bayesian Inference in Regime-Switching ARMA Models with Absorbing States: The Dynamics of the Ex-Ante Real Interest Rate Under Structural Breaks," MPRA Paper 51117, University Library of Munich, Germany.
    6. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    7. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
    8. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    9. Wolfgang Lemke & Deutsche Bundesbank, 2006. "Term Structure Modeling and Estimation in a State Space Framework," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-28344-7, October.
    10. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    11. Yoosoon Chang & Fei Tan & Xin Wei, 2018. "State Space Models with Endogenous Regime Switching," CAEPR Working Papers 2018-012, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    12. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    13. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    14. repec:wyi:journl:002173 is not listed on IDEAS
    15. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    16. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    17. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.
    18. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    19. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    20. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    21. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:154-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.