IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v148y2018icp16-36.html
   My bibliography  Save this article

Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus

Author

Listed:
  • Sadaf, Hina
  • Akbar, Muhammad Usman
  • Nadeem, S.

Abstract

This paper examines the peristaltic flow of Williamson nanofluid in an annulus in the presence of induced magnetic field. Present problem is determined under the molds of long wavelength and low Reynolds number approximation. This theoretical problem can be considered as a mathematical illustration to the movement of fluids in the presence of an endoscope or catheter tube. The inner cylinder is rigid, whereas the outward cylinder proceeds a sinusoidal wave moving down its walls. The analytical solution is obtained by using Homotopy perturbation method. Mathematica numerical simulations are adopted to calculate frictional forces and pressure rise. Behavior of various physical parameters is presented through graphs. It is found that induced magnetic field and current density enhance by increasing value of magnetic Reynolds number. It is also found that temperature profile upturns with an upturn in Brownian motion and thermophoresis parameter.

Suggested Citation

  • Sadaf, Hina & Akbar, Muhammad Usman & Nadeem, S., 2018. "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 16-36.
  • Handle: RePEc:eee:matcom:v:148:y:2018:i:c:p:16-36
    DOI: 10.1016/j.matcom.2017.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475418300028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2017.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odibat, Zaid & Momani, Shaher, 2008. "Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 167-174.
    2. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    3. Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
    4. Mekheimer, Kh.S. & Abd elmaboud, Y., 2008. "Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2403-2415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas, Nadeem & Malik, M.Y. & Alqarni, M.S. & Nadeem, S., 2020. "Study of three dimensional stagnation point flow of hybrid nanofluid over an isotropic slip surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cveticanin, L., 2009. "Application of homotopy-perturbation to non-linear partial differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 221-228.
    2. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    3. Alvandi, Azizallah & Paripour, Mahmoud, 2019. "The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 151-160.
    4. Abdolamir Karbalaie & Hamed Hamid Muhammed & Bjorn-Erik Erlandsson, 2013. "Using Homo-Separation of Variables for Solving Systems of Nonlinear Fractional Partial Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-8, June.
    5. Chandra Guru Sekar, R. & Murugesan, K., 2016. "System of linear second order Volterra integro-differential equations using Single Term Walsh Series technique," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 484-492.
    6. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    7. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    8. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    9. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    10. Jim Gatheral & Radoš Radoičić, 2019. "Rational Approximation Of The Rough Heston Solution," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    11. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    12. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    13. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    14. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    15. Fathy, Mohamed & Abdelgaber, K.M., 2022. "Approximate solutions for the fractional order quadratic Riccati and Bagley-Torvik differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. S. Balaji, 2014. "Legendre Wavelet Operational Matrix Method for Solution of Riccati Differential Equation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-10, June.
    17. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    18. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    19. Saima Noreen, 2013. "Mixed Convection Peristaltic Flow of Third Order Nanofluid with an Induced Magnetic Field," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-15, November.
    20. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:148:y:2018:i:c:p:16-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.