IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p546-d746086.html
   My bibliography  Save this article

The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model

Author

Listed:
  • Mădălina Sofia Paşca

    (Department of Mathematics, Politehnica University Timişoara, 300006 Timişoara, Romania
    Department of Mathematics, West University of Timişoara, 300223 Timişoara, Romania
    These authors contributed equally to this work.)

  • Olivia Bundău

    (Department of Mathematics, Politehnica University Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

  • Adina Juratoni

    (Department of Mathematics, Politehnica University Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

  • Bogdan Căruntu

    (Department of Mathematics, Politehnica University Timişoara, 300006 Timişoara, Romania
    These authors contributed equally to this work.)

Abstract

In this paper, least squares homotopy perturbation is presented as a straightforward and accurate method to compute approximate analytical solutions for systems of ordinary differential equations. The method is employed to solve a problem related to a laminar flow of a viscous fluid in a semi-porous channel, which may be used to model the blood flow through a blood vessel, taking into account the effects of a magnetic field. The numerical computations show that the method is both easy to use and very accurate compared to the other methods previously used to solve the given problem.

Suggested Citation

  • Mădălina Sofia Paşca & Olivia Bundău & Adina Juratoni & Bogdan Căruntu, 2022. "The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:546-:d:746086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaman, A. & Ali, N. & Sajid, M., 2017. "Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 134(C), pages 1-16.
    2. Ali Rehman & Zabidin Salleh, 2021. "Influence of Marangoni Convection on Magnetohydrodynamic Viscous Dissipation and Heat Transfer on Hybrid Nanofluids in a Rotating System among Two Surfaces," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    3. Bagh Ali & Rizwan Ali Naqvi & Amir Haider & Dildar Hussain & Sajjad Hussain, 2020. "Finite Element Study of MHD Impacts on the Rotating Flow of Casson Nanofluid with the Double Diffusion Cattaneo—Christov Heat Flux Model," Mathematics, MDPI, vol. 8(9), pages 1-17, September.
    4. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    5. Mubashir Qayyum & Imbsat Oscar & Gaetano Luciano, 2021. "Least Square Homotopy Perturbation Method for Ordinary Differential Equations," Journal of Mathematics, Hindawi, vol. 2021, pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Kaslik & Mihaela Neamţu & Anca Rădulescu, 2022. "Preface to the Special Issue on “Advances in Differential Dynamical Systems with Applications to Economics and Biology”," Mathematics, MDPI, vol. 10(19), pages 1-3, September.
    2. Remus-Daniel Ene & Nicolina Pop & Marioara Lapadat & Luisa Dungan, 2022. "Approximate Closed-Form Solutions for the Maxwell-Bloch Equations via the Optimal Homotopy Asymptotic Method," Mathematics, MDPI, vol. 10(21), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdolamir Karbalaie & Hamed Hamid Muhammed & Bjorn-Erik Erlandsson, 2013. "Using Homo-Separation of Variables for Solving Systems of Nonlinear Fractional Partial Differential Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-8, June.
    2. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    3. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    4. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Javidi, M. & Golbabai, A., 2008. "Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 309-313.
    6. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    8. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    9. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    10. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    11. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    12. Keramati, B., 2009. "An approach to the solution of linear system of equations by He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 152-156.
    13. Allan, Fathi M., 2009. "Construction of analytic solution to chaotic dynamical systems using the Homotopy analysis method," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1744-1752.
    14. Demiray, Hilmi, 2006. "Interaction of nonlinear waves governed by Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1185-1189.
    15. Krivovichev, Gerasim V., 2022. "Comparison of inviscid and viscid one-dimensional models of blood flow in arteries," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    16. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "A new application of variational iteration method for the chaotic Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1604-1610.
    17. Siddiqui, A.M. & Ahmed, M. & Ghori, Q.K., 2007. "Thin film flow of non-Newtonian fluids on a moving belt," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1006-1016.
    18. Shidfar, A. & Molabahrami, A. & Babaei, A. & Yazdanian, A., 2009. "A study on the d-dimensional Schrödinger equation with a power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2154-2158.
    19. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    20. Alomari, A.K. & Noorani, M.S.M. & Nazar, R., 2009. "On the homotopy analysis method for the exact solutions of Helmholtz equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1873-1879.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:546-:d:746086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.