IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v355y2019icp151-160.html
   My bibliography  Save this article

The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel

Author

Listed:
  • Alvandi, Azizallah
  • Paripour, Mahmoud

Abstract

The reproducing kernel method is applied to Volterra nonlinear integro-differential equations. In this technique, the nonlinear term is replaced by its Taylor series. The exact solution is represented in the form of series in the reproducing Hilbert kernel space. The approximation solution is expressed by n-term summation of reproducing kernel functions. Some numerical examples are solved in two different spaces and parameters of n. Measurements of the experimental data is an indications of stability and convergence on the reproducing kernel.

Suggested Citation

  • Alvandi, Azizallah & Paripour, Mahmoud, 2019. "The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 151-160.
  • Handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:151-160
    DOI: 10.1016/j.amc.2019.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319301274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omar Abu Arqub & Mohammed Al-Smadi & Shaher Momani, 2012. "Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-16, September.
    2. Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musa Cakir & Baransel Gunes, 2022. "A Fitted Operator Finite Difference Approximation for Singularly Perturbed Volterra–Fredholm Integro-Differential Equations," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    2. Geng, F.Z. & Wu, X.Y., 2021. "Reproducing kernel function-based Filon and Levin methods for solving highly oscillatory integral," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    3. Li, X.Y. & Wu, B.Y., 2020. "A new kernel functions based approach for solving 1-D interface problems," Applied Mathematics and Computation, Elsevier, vol. 380(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandra Guru Sekar, R. & Murugesan, K., 2016. "System of linear second order Volterra integro-differential equations using Single Term Walsh Series technique," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 484-492.
    2. Deep, Amar & Deepmala, & Rabbani, Mohsen, 2021. "A numerical method for solvability of some non-linear functional integral equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Sahu, P.K. & Ray, S.Saha, 2015. "Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 715-723.
    4. Sadaf, Hina & Akbar, Muhammad Usman & Nadeem, S., 2018. "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 16-36.
    5. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:355:y:2019:i:c:p:151-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.