IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v31y2007i1p257-260.html
   My bibliography  Save this article

A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method

Author

Listed:
  • Abbasbandy, S.

Abstract

In this paper, Adomian’s decomposition method is proposed to solve the well-known Blasius equation. Comparison with homotopy perturbation method and Howarth’s numerical solution reveals that the Adomian’s decomposition method is of high accuracy.

Suggested Citation

  • Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
  • Handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:257-260
    DOI: 10.1016/j.chaos.2005.10.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905010404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.10.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Limit cycle and bifurcation of nonlinear problems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 827-833.
    2. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    2. Abdel-Halim Hassan, I.H., 2008. "Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 53-65.
    3. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2019. "Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 762-772.
    4. Beléndez, A. & Beléndez, T. & Neipp, C. & Hernández, A. & Álvarez, M.L., 2009. "Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 746-764.
    5. Ramos, J.I., 2009. "Generalized decomposition methods for nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1078-1084.
    6. Jafarimoghaddam, A. & Roşca, N.C. & Roşca, A.V. & Pop, I., 2021. "The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 60-76.
    7. Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
    8. Tajvidi, T. & Razzaghi, M. & Dehghan, M., 2008. "Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 59-66.
    9. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2020. "A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    2. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    3. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    4. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    5. Chun, Changbum, 2007. "Integration using He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1130-1134.
    6. Javidi, M. & Golbabai, A., 2009. "A new domain decomposition algorithm for generalized Burger’s–Huxley equation based on Chebyshev polynomials and preconditioning," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 849-857.
    7. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    8. Batiha, B. & Noorani, M.S.M. & Hashim, I., 2008. "Application of variational iteration method to the generalized Burgers–Huxley equation," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 660-663.
    9. Lv, Jian Cheng & Yi, Zhang, 2007. "Some chaotic behaviors in a MCA learning algorithm with a constant learning rate," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1040-1047.
    10. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    11. Ghorbani, Asghar, 2009. "Beyond Adomian polynomials: He polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1486-1492.
    12. Borhanifar, A. & Kabir, M.M. & Maryam Vahdat, L., 2009. "New periodic and soliton wave solutions for the generalized Zakharov system and (2+1)-dimensional Nizhnik–Novikov–Veselov system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1646-1654.
    13. Siddiqui, A.M. & Mahmood, R. & Ghori, Q.K., 2008. "Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 140-147.
    14. Cai, Xu-Chu & Wu, Wen-Ying, 2009. "Homotopy perturbation method for nonlinear oscillator equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2581-2583.
    15. Yu, Jun & Zhang, Weijun & Gao, Xiaoming, 2007. "Dynamical behavior in the perturbed compound KdV–Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1307-1313.
    16. Öziş, Turgut & Yıldırım, Ahmet, 2007. "A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 989-991.
    17. (Benn)Wu, Xu-Hong & He, Ji-Huan, 2008. "EXP-function method and its application to nonlinear equations," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 903-910.
    18. Ravi Kanth, A.S.V. & Aruna, K., 2009. "He’s homotopy-perturbation method for solving higher-order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1905-1909.
    19. He, Ji-Huan & Wu, Xu-Hong, 2006. "Construction of solitary solution and compacton-like solution by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 108-113.
    20. Abbasbandy, S., 2007. "Application of He’s homotopy perturbation method to functional integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1243-1247.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:31:y:2007:i:1:p:257-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.