IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v120y2016icp120-128.html
   My bibliography  Save this article

A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry

Author

Listed:
  • Dengiz, Berna
  • İç, Yusuf Tansel
  • Belgin, Onder

Abstract

Simulation modeling is one of the most useful techniques to analyze and evaluate the dynamic behavior of the complex manufacturing systems. Combining the mathematical power of an analytical method and the modeling capability of simulation with optimization approach called hybrid simulation-analytical modeling has been presented rarely. In this study a production control model is developed for a paint shop department in an automotive company in Turkey. As a real case study, the optimum operating setting of a paint shop production line of automotive company is determined using hybrid simulation optimization approach. In the optimization stage of the study Design of Experiment (DoE) is used to identify critical variables of the system by fitting a polynomial to the experimental data in a multiple linear regression analysis. The meta-model is validated and shown that it provides good approximations to simulation results. Findings from hybrid simulation-analytical optimization approach give invaluable knowledge to the company for the re-designing and control of current manufacturing system to increase its productivity.

Suggested Citation

  • Dengiz, Berna & İç, Yusuf Tansel & Belgin, Onder, 2016. "A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 120-128.
  • Handle: RePEc:eee:matcom:v:120:y:2016:i:c:p:120-128
    DOI: 10.1016/j.matcom.2015.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415001494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Li & Chiu, Francis, 1993. "Manufacturing cell operating characteristics," European Journal of Operational Research, Elsevier, vol. 69(3), pages 424-437, September.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. Dengiz, Berna & Akbay, Kunter S., 2000. "Computer simulation of a PCB production line: metamodeling approach," International Journal of Production Economics, Elsevier, vol. 63(2), pages 195-205, January.
    4. Gül Gürkan, 2000. "Simulation optimization of buffer allocations in production lines with unreliable machines," Annals of Operations Research, Springer, vol. 93(1), pages 177-216, January.
    5. Yang, Taho & Chou, Pohung, 2005. "Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(1), pages 9-21.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durieux, Severine & Pierreval, Henri, 2004. "Regression metamodeling for the design of automated manufacturing system composed of parallel machines sharing a material handling resource," International Journal of Production Economics, Elsevier, vol. 89(1), pages 21-30, May.
    2. Noguera, Jose H. & Watson, Edward F., 2006. "Response surface analysis of a multi-product batch processing facility using a simulation metamodel," International Journal of Production Economics, Elsevier, vol. 102(2), pages 333-343, August.
    3. Katarzyna Growiec & Jakub Growiec & Bogumil Kaminski, 2017. "Social Network Structure and The Trade-Off Between Social Utility and Economic Performance," KAE Working Papers 2017-026, Warsaw School of Economics, Collegium of Economic Analysis.
    4. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    5. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    7. Tunali, S. & Batmaz, I., 2003. "A metamodeling methodology involving both qualitative and quantitative input factors," European Journal of Operational Research, Elsevier, vol. 150(2), pages 437-450, October.
    8. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    9. Robertson, Joseph J. & Polly, Ben J. & Collis, Jon M., 2015. "Reduced-order modeling and simulated annealing optimization for efficient residential building utility bill calibration," Applied Energy, Elsevier, vol. 148(C), pages 169-177.
    10. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    11. Ziesmer, Johannes & Jin, Ding & Mukashov, Askar & Henning, Christian, 2023. "Integrating fundamental model uncertainty in policy analysis," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Kleijnen, J.P.C. & Sanchez, S.M. & Lucas, T.W. & Cioppa, T.M., 2003. "A User's Guide to the Brave New World of Designing Simulation Experiments," Discussion Paper 2003-1, Tilburg University, Center for Economic Research.
    13. Kamiński, Bogumił, 2015. "A method for the updating of stochastic kriging metamodels," European Journal of Operational Research, Elsevier, vol. 247(3), pages 859-866.
    14. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    15. Johannes Ziesmer & Ding Jin & Sneha D Thube & Christian Henning, 2023. "A Dynamic Baseline Calibration Procedure for CGE models," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1331-1368, April.
    16. Jin, Ding & Hedtrich, Johannes & Henning, Christian, 2018. "Applying Meta modeling for extended CGE-modeling: Sample techniques and potential application," Conference papers 332947, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    18. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    19. J P C Kleijnen & W C M van Beers, 2004. "Application-driven sequential designs for simulation experiments: Kriging metamodelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 876-883, August.
    20. Delli Gatti,Domenico & Fagiolo,Giorgio & Gallegati,Mauro & Richiardi,Matteo & Russo,Alberto (ed.), 2018. "Agent-Based Models in Economics," Cambridge Books, Cambridge University Press, number 9781108400046, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:120:y:2016:i:c:p:120-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.