IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1501.04682.html
   My bibliography  Save this paper

Toward robust early-warning models: A horse race, ensembles and model uncertainty

Author

Listed:
  • Markus Holopainen
  • Peter Sarlin

Abstract

This paper presents first steps toward robust models for crisis prediction. We conduct a horse race of conventional statistical methods and more recent machine learning methods as early-warning models. As individual models are in the literature most often built in isolation of other methods, the exercise is of high relevance for assessing the relative performance of a wide variety of methods. Further, we test various ensemble approaches to aggregating the information products of the built models, providing a more robust basis for measuring country-level vulnerabilities. Finally, we provide approaches to estimating model uncertainty in early-warning exercises, particularly model performance uncertainty and model output uncertainty. The approaches put forward in this paper are shown with Europe as a playground. Generally, our results show that the conventional statistical approaches are outperformed by more advanced machine learning methods, such as k-nearest neighbors and neural networks, and particularly by model aggregation approaches through ensemble learning.

Suggested Citation

  • Markus Holopainen & Peter Sarlin, 2015. "Toward robust early-warning models: A horse race, ensembles and model uncertainty," Papers 1501.04682, arXiv.org, revised Apr 2016.
  • Handle: RePEc:arx:papers:1501.04682
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1501.04682
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
    2. Alessi, Lucia & Detken, Carsten, 2018. "Identifying excessive credit growth and leverage," Journal of Financial Stability, Elsevier, vol. 35(C), pages 215-225.
    3. Lainà, Patrizio & Nyholm, Juho & Sarlin, Peter, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, Elsevier, vol. 24(C), pages 18-35.
    4. Peter Sarlin, 2014. "Macroprudential oversight, risk communication and visualization," Papers 1404.4550, arXiv.org, revised Jun 2014.
    5. Carmen M. Reinhart & Kenneth S. Rogoff, 2014. "This Time is Different: A Panoramic View of Eight Centuries of Financial Crises," Annals of Economics and Finance, Society for AEF, vol. 15(2), pages 215-268, November.
    6. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency Crashes in Emerging Markets: Empirical Indicators," Center for International and Development Economics Research (CIDER) Working Papers 233424, University of California-Berkeley, Department of Economics.
    7. Sarlin, Peter, 2013. "On policymakers’ loss functions and the evaluation of early warning systems," Economics Letters, Elsevier, vol. 119(1), pages 1-7.
    8. Andrew Berg & Eduardo Borensztein & Catherine Pattillo, 2005. "Assessing Early Warning Systems: How Have They Worked in Practice?," IMF Staff Papers, Palgrave Macmillan, vol. 52(3), pages 1-5.
    9. Babecký, Jan & Havránek, Tomáš & Matějů, Jakub & Rusnák, Marek & Šmídková, Kateřina & Vašíček, Bořek, 2014. "Banking, debt, and currency crises in developed countries: Stylized facts and early warning indicators," Journal of Financial Stability, Elsevier, vol. 15(C), pages 1-17.
    10. Sarlin, Peter & Peltonen, Tuomas A., 2013. "Mapping the state of financial stability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 46-76.
    11. Tobias Knedlik & Gregor Von Schweinitz, 2012. "Macroeconomic Imbalances as Indicators for Debt Crises in Europe," Journal of Common Market Studies, Wiley Blackwell, vol. 50(5), pages 726-745, September.
    12. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    13. Graciela L. Kaminsky, 2003. "Varieties of Currency Crises," NBER Working Papers 10193, National Bureau of Economic Research, Inc.
    14. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    15. Alessi, Lucia & Detken, Carsten, 2011. "Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity," European Journal of Political Economy, Elsevier, vol. 27(3), pages 520-533, September.
    16. Mr. Axel Schimmelpfennig & Nouriel Roubini & Paolo Manasse, 2003. "Predicting Sovereign Debt Crises," IMF Working Papers 2003/221, International Monetary Fund.
    17. Jeffrey D. Sachs & Aaron Tornell & Andrés Velasco, 1996. "Financial Crises in Emerging Markets: The Lessons from 1995," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(1), pages 147-216.
    18. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    19. Graciela Kaminsky & Saul Lizondo & Carmen M. Reinhart, 1998. "Leading Indicators of Currency Crises," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 1-48, March.
    20. Barrell, Ray & Davis, E. Philip & Karim, Dilruba & Liadze, Iana, 2010. "Bank regulation, property prices and early warning systems for banking crises in OECD countries," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2255-2264, September.
    21. Marcos Chamon & Paolo Manasse & Alessandro Prati, 2007. "Can We Predict the Next Capital Account Crisis?," IMF Staff Papers, Palgrave Macmillan, vol. 54(2), pages 270-305, June.
    22. André Fourçans & Raphaël Franck, 2003. "Currency Crises," Books, Edward Elgar Publishing, number 3124.
    23. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    24. repec:zbw:bofrdp:2014_014 is not listed on IDEAS
    25. Frank, Charles Jr. & Cline, William R., 1971. "Measurement of debt servicing capacity: An application of discriminant analysis," Journal of International Economics, Elsevier, vol. 1(3), pages 327-344, August.
    26. Mathias Drehmann & Claudio Borio & Kostas Tsatsaronis, 2011. "Anchoring Countercyclical Capital Buffers: The role of Credit Aggregates," International Journal of Central Banking, International Journal of Central Banking, vol. 7(4), pages 189-240, December.
    27. Duttagupta, Rupa & Cashin, Paul, 2011. "Anatomy of banking crises in developing and emerging market countries," Journal of International Money and Finance, Elsevier, vol. 30(2), pages 354-376, March.
    28. Honohan,Patrick & Laeven,Luc (ed.), 2005. "Systemic Financial Crises," Cambridge Books, Cambridge University Press, number 9780521851855, January.
    29. El-Shagi, M. & Knedlik, T. & von Schweinitz, G., 2013. "Predicting financial crises: The (statistical) significance of the signals approach," Journal of International Money and Finance, Elsevier, vol. 35(C), pages 76-103.
    30. Fioramanti, Marco, 2008. "Predicting sovereign debt crises using artificial neural networks: A comparative approach," Journal of Financial Stability, Elsevier, vol. 4(2), pages 149-164, June.
    31. Peltonen, Tuomas A., 2006. "Are emerging market currency crises predictable? A test," Working Paper Series 571, European Central Bank.
    32. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    33. Barry Eichengreen & Andrew K. Rose, 1998. "Staying Afloat When the Wind Shifts: External Factors and Emerging-Market Banking Crises," NBER Working Papers 6370, National Bureau of Economic Research, Inc.
    34. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    35. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency crashes in emerging markets: An empirical treatment," Journal of International Economics, Elsevier, vol. 41(3-4), pages 351-366, November.
    36. Bussiere, Matthieu & Fratzscher, Marcel, 2006. "Towards a new early warning system of financial crises," Journal of International Money and Finance, Elsevier, vol. 25(6), pages 953-973, October.
    37. Claudio Borio & Mathias Drehmann, 2009. "Assessing the risk of banking crises - revisited," BIS Quarterly Review, Bank for International Settlements, March.
    38. Berg, Andrew & Pattillo, Catherine, 1999. "Predicting currency crises:: The indicators approach and an alternative," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 561-586, August.
    39. Schmidt, Reinhart, 1984. "Early warning of debt rescheduling," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 357-370, June.
    40. Alessi, Lucia & Antunes, Antonio & Babecky, Jan & Baltussen, Simon & Behn, Markus & Bonfim, Diana & Bush, Oliver & Detken, Carsten & Frost, Jon & Guimaraes, Rodrigo & Havranek, Tomas & Joy, Mark & Kau, 2015. "Comparing different early warning systems: Results from a horse race competition among members of the Macro-prudential Research Network," MPRA Paper 62194, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Menden & Christian R. Proaño, 2017. "Dissecting the financial cycle with dynamic factor models," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1965-1994, December.
    2. Tjeerd M. Boonman & Jan P. A. M. Jacobs & Gerard H. Kuper & Alberto Romero, 2019. "Early Warning Systems for Currency Crises with Real-Time Data," Open Economies Review, Springer, vol. 30(4), pages 813-835, September.
    3. León, Carlos & Barucca, Paolo & Acero, Oscar & Gage, Gerardo & Ortega, Fabio, 2020. "Pattern recognition of financial institutions’ payment behavior," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    4. Umberto Collodel, 2021. "Finding a needle in a haystack: Do Early Warning Systems for Sudden Stops work?," Working Papers halshs-03185520, HAL.
    5. du Plessis, Emile, 2022. "Multinomial modeling methods: Predicting four decades of international banking crises," Economic Systems, Elsevier, vol. 46(2).
    6. Piotr Bańbuła & Arkadiusz Kotuła & Agnieszka Paluch & Mateusz Pipień & Piotr Wdowiński, 2019. "Optimal level of capital in the Polish banking sector," NBP Working Papers 312, Narodowy Bank Polski.
    7. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
    8. Umberto Collodel, 2021. "Finding a needle in a haystack: Do Early Warning Systems for Sudden Stops work?," PSE Working Papers halshs-03185520, HAL.
    9. Markus Behn & Carsten Detken & Tuomas Peltonen & Willem Schudel, 2017. "Predicting Vulnerabilities in the EU Banking Sector: The Role of Global and Domestic Factors," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 147-189, December.
    10. Iwanicz-Drozdowska Małgorzata & Kurowski Łukasz, 2021. "Keep your friends close and your enemies closer – the case of monetary policy and financial imbalances," German Economic Review, De Gruyter, vol. 22(4), pages 383-414, November.
    11. Eero Tölö & Helinä Laakkonen & Simo Kalatie, 2018. "Evaluating Indicators for Use in Setting the Countercyclical Capital Buffer," International Journal of Central Banking, International Journal of Central Banking, vol. 14(2), pages 51-112, March.
    12. John Dooley & Dieter Gramlich & Mikhail V. Oet & Stephen J. Ong & Peter Sarlin, 2015. "Evaluating the Information Value for Measures of Systemic Conditions," Working Papers (Old Series) 1513, Federal Reserve Bank of Cleveland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    2. Lainà, Patrizio & Nyholm, Juho & Sarlin, Peter, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, Elsevier, vol. 24(C), pages 18-35.
    3. Patrizio Lainà & Juho Nyholm & Peter Sarlin, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, John Wiley & Sons, vol. 24(1), pages 18-35, January.
    4. Kauko, Karlo, 2014. "How to foresee banking crises? A survey of the empirical literature," Economic Systems, Elsevier, vol. 38(3), pages 289-308.
    5. Peter Sarlin & Dorina Marghescu, 2011. "Neuro‐Genetic Predictions Of Currency Crises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(4), pages 145-160, October.
    6. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    7. Sarlin, Peter & Holopainen, Markus, 2016. "Toward robust early-warning models: a horse race, ensembles and model uncertainty," Working Paper Series 1900, European Central Bank.
    8. Markus Behn & Carsten Detken & Tuomas Peltonen & Willem Schudel, 2017. "Predicting Vulnerabilities in the EU Banking Sector: The Role of Global and Domestic Factors," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 147-189, December.
    9. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2018. "An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?," Discussion Papers 48/2018, Deutsche Bundesbank.
    10. Alessi, Lucia & Detken, Carsten, 2018. "Identifying excessive credit growth and leverage," Journal of Financial Stability, Elsevier, vol. 35(C), pages 215-225.
    11. Christofides, Charis & Eicher, Theo S. & Papageorgiou, Chris, 2016. "Did established Early Warning Signals predict the 2008 crises?," European Economic Review, Elsevier, vol. 81(C), pages 103-114.
    12. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    13. Schudel, Willem, 2015. "Shifting horizons: assessing macro trends before, during, and following systemic banking crises," Working Paper Series 1766, European Central Bank.
    14. Sondermann, David & Zorell, Nico, 2019. "A macroeconomic vulnerability model for the euro area," Working Paper Series 2306, European Central Bank.
    15. Xianglong Liu, 2023. "Towards Better Banking Crisis Prediction: Could an Automatic Variable Selection Process Improve the Performance?," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 288-312, June.
    16. Fendel Ralf & Stremmel Hanno, 2016. "Characteristics of Banking Crises: A Comparative Study with Geographical Contagion," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 349-388, May.
    17. Mikkel Hermansen & Oliver Röhn, 2017. "Economic resilience: The usefulness of early warning indicators in OECD countries," OECD Journal: Economic Studies, OECD Publishing, vol. 2016(1), pages 9-35.
    18. Lainà, Patrizio & Nyholm, Juho & Sarlin, Peter, 2015. "Leading indicators of systemic banking crises: Finland in a panel of EU countries," Review of Financial Economics, Elsevier, vol. 24(C), pages 18-35.
    19. Filippopoulou, Chryssanthi & Galariotis, Emilios & Spyrou, Spyros, 2020. "An early warning system for predicting systemic banking crises in the Eurozone: A logit regression approach," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 344-363.
    20. repec:zbw:bofrdp:2014_014 is not listed on IDEAS
    21. Detken, Carsten & Peltonen, Tuomas A. & Schudel, Willem & Behn, Markus, 2013. "Setting countercyclical capital buffers based on early warning models: would it work?," Working Paper Series 1604, European Central Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1501.04682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.