IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v54y2018icp132-147.html
   My bibliography  Save this article

Low-carbon measures for Fiji's land transport energy system

Author

Listed:
  • Prasad, Ravita D.
  • Raturi, Atul

Abstract

Road transport in Fiji is fully dependent on petroleum fuels. This study is a first for Fiji where fuel demand for land transport is studied under some clean transportation strategies. Long-range Energy Alternatives Planning (LEAP) tool is used with 2016 as the base year and 2040 as the end year. In 2016, approximately 337 million litres of fuel was used with an associated GHG emission of around 864 Gg of CO2e, which increases to 1158.4 Gg by 2040 in Business as usual (BAU) scenario. Several measures are explored to reduce the fuel consumption in the land transport sector in Fiji.

Suggested Citation

  • Prasad, Ravita D. & Raturi, Atul, 2018. "Low-carbon measures for Fiji's land transport energy system," Utilities Policy, Elsevier, vol. 54(C), pages 132-147.
  • Handle: RePEc:eee:juipol:v:54:y:2018:i:c:p:132-147
    DOI: 10.1016/j.jup.2018.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178718300675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2018.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    2. Bose, Ranjan Kumar & Srinivasachary, V, 1997. "Policies to reduce energy use and environmental emissions in the transport sector : A case of Delhi city," Energy Policy, Elsevier, vol. 25(14-15), pages 1137-1150, December.
    3. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    4. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    5. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    6. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    7. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    8. Marcia Moraes, 2011. "Perspective: Lessons from Brazil," Nature, Nature, vol. 474(7352), pages 25-25, June.
    9. Guttikunda, Sarath K. & Mohan, Dinesh, 2014. "Re-fueling road transport for better air quality in India," Energy Policy, Elsevier, vol. 68(C), pages 556-561.
    10. Andrés, Lidia & Padilla, Emilio, 2015. "Energy intensity in road freight transport of heavy goods vehicles in Spain," Energy Policy, Elsevier, vol. 85(C), pages 309-321.
    11. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    12. Dhar, Subash & Shukla, Priyadarshi R., 2015. "Low carbon scenarios for transport in India: Co-benefits analysis," Energy Policy, Elsevier, vol. 81(C), pages 186-198.
    13. Mraihi, Rafaa & ben Abdallah, Khaled & Abid, Mehdi, 2013. "Road transport-related energy consumption: Analysis of driving factors in Tunisia," Energy Policy, Elsevier, vol. 62(C), pages 247-253.
    14. Shapouri, Hosein & Salassi, Michael, 2006. "The Economic Feasibility of Ethanol Production from Sugar in the United States," Miscellaneous Publications 322769, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    2. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    3. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    4. Yan, Xinping & He, Yapeng & Fan, Ailong, 2023. "Carbon footprint prediction considering the evolution of alternative fuels and cargo: A case study of Yangtze river ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    2. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    3. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    4. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    5. Jorge M. Islas-Samperio & Fabio Manzini & Genice K. Grande-Acosta, 2019. "Toward a Low-Carbon Transport Sector in Mexico," Energies, MDPI, vol. 13(1), pages 1-27, December.
    6. Monica Maduekwe & Uduak Akpan & Salisu Isihak, 2020. "Road Transport Energy Consumption and Vehicular Emissions in Lagos, Nigeria," Research Africa Network Working Papers 20/055, Research Africa Network (RAN).
    7. Zhang, Dongyu & Liu, Gengyuan & Chen, Caocao & Zhang, Yan & Hao, Yan & Casazza, Marco, 2019. "Medium-to-long-term coupled strategies for energy efficiency and greenhouse gas emissions reduction in Beijing (China)," Energy Policy, Elsevier, vol. 127(C), pages 350-360.
    8. Nian, Victor, 2016. "Analysis of interconnecting energy systems over a synchronized life cycle," Applied Energy, Elsevier, vol. 165(C), pages 1024-1036.
    9. Saket, Mohammad Javad & Maleki, Abbas & Hezaveh, Erfan Doroudgar & Karimi, Mohammad Sadegh, 2019. "Institutional analysis on impediments over fuel consumption reduction at Iran's transportation niches," Energy Policy, Elsevier, vol. 129(C), pages 861-867.
    10. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    11. Malik, Leeza & Tiwari, Geetam, 2017. "Assessment of interstate freight vehicle characteristics and impact of future emission and fuel economy standards on their emissions in India," Energy Policy, Elsevier, vol. 108(C), pages 121-133.
    12. Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
    13. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    14. Huang, Shupei & An, Haizhong & Viglia, Silvio & Fiorentino, Gabriella & Corcelli, Fabiana & Fang, Wei & Ulgiati, Sergio, 2018. "Terrestrial transport modalities in China concerning monetary, energy and environmental costs," Energy Policy, Elsevier, vol. 122(C), pages 129-141.
    15. Tsemekidi Tzeiranaki, Sofia & Economidou, Marina & Bertoldi, Paolo & Thiel, Christian & Fontaras, Georgios & Clementi, Enrico Luca & Franco De Los Rios, Camilo, 2023. "“The impact of energy efficiency and decarbonisation policies on the European road transport sector”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    16. Liu, Feiqi & Zhao, Fuquan & Liu, Zongwei & Hao, Han, 2019. "Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation," Energy Policy, Elsevier, vol. 132(C), pages 462-473.
    17. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    18. Nian, Victor, 2016. "The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation," Applied Energy, Elsevier, vol. 179(C), pages 1069-1080.
    19. Jonas Forsberg & Anna Krook-Riekkola, 2021. "Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model," Energies, MDPI, vol. 14(11), pages 1-26, May.
    20. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:54:y:2018:i:c:p:132-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.