IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v41y2016icp246-251.html
   My bibliography  Save this article

The impact of Germany's Energiewende on the transport sector – Unsolved problems and conflicts

Author

Listed:
  • Canzler, Weert
  • Wittowsky, Dirk

Abstract

Politically-driven climate protection targets call for decarbonization and a massive reduction of total energy consumption by 2050. A comprehensive transformation of existing transport systems and individual mobility is needed to achieve this. There will be no energy transition (“Energiewende”) without a transport transition. Electromobility provides great savings compared to fossil-fueled transport. In addition information and communication technologies (ICT) have become a key factor of innovation and inter- and multimodality. With all structural changes (e.g. industrial restructuring or social change), converting existing organizational forms and mobility evokes conflicts. For example, competing spatial requirements of the energy sector and mobility as well as the exclusion of certain categories of persons are to be expected. Indeed, the transformation process is slowed down by shortcomings in the combination of energy and transport technologies, organizational culture and regulations. A number of questions still remain unanswered.

Suggested Citation

  • Canzler, Weert & Wittowsky, Dirk, 2016. "The impact of Germany's Energiewende on the transport sector – Unsolved problems and conflicts," Utilities Policy, Elsevier, vol. 41(C), pages 246-251.
  • Handle: RePEc:eee:juipol:v:41:y:2016:i:c:p:246-251
    DOI: 10.1016/j.jup.2016.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178716300595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2016.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisa Ruhrort & Josephine Steiner & Andreas Graff & Daniel Hinkeldein & Christian Hoffmann, 2014. "Carsharing with electric vehicles in the context of users' mobility needs - results from user-centred research from the BeMobility field trial (Berlin)," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 286-305.
    2. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    3. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
    4. Rode, Philipp & Floater, Graham & Thomopoulos, Nikolas & Docherty, James & Schwinger, Peter & Mahendra, Anjali & Fang, Wanli, 2014. "Accessibility in cities: transport and urban form," LSE Research Online Documents on Economics 60477, London School of Economics and Political Science, LSE Library.
    5. Bruno Faivre d'Arcier & Yveline Lecler, 2014. "Promoting next generation vehicles in Japan: the smart communities and their experimentations," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 324-346.
    6. Itf, 2015. "Urban Mobility System Upgrade: How shared self-driving cars could change city traffic," International Transport Forum Policy Papers 6, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alyamani, Ryan & Pappelis, Dimitrios & Kamargianni, Maria, 2024. "Modelling the determinants of electrical vehicles adoption in Riyadh, Saudi Arabia," Energy Policy, Elsevier, vol. 188(C).
    2. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    3. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    2. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    3. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    4. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    5. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    6. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    8. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Ito, Nobuyuki & Takeuchi, Kenji & Managi, Shunsuke, 2019. "Do battery-switching systems accelerate the adoption of electric vehicles? A stated preference study," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 85-92.
    10. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    11. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    12. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    13. Biswas, D.B. & Bose, S. & Dalvi, V.H. & Deshmukh, S.P. & Shenoy, N.V. & Panse, S.V. & Joshi, J.B., 2020. "A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage against solar photovoltai," Energy, Elsevier, vol. 213(C).
    14. Ivan Mareev & Dirk Uwe Sauer, 2018. "Energy Consumption and Life Cycle Costs of Overhead Catenary Heavy-Duty Trucks for Long-Haul Transportation," Energies, MDPI, vol. 11(12), pages 1-18, December.
    15. Toktarova, Alla & Walter, Viktor & Göransson, Lisa & Johnsson, Filip, 2022. "Interaction between electrified steel production and the north European electricity system," Applied Energy, Elsevier, vol. 310(C).
    16. Cagli, Efe Caglar, 2023. "The volatility spillover between battery metals and future mobility stocks: Evidence from the time-varying frequency connectedness approach," Resources Policy, Elsevier, vol. 86(PA).
    17. Verdolini, Elena & Vona, Francesco & Popp, David, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Energy Policy, Elsevier, vol. 116(C), pages 242-256.
    18. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2017. "Cost optimal urban energy systems planning in the context of national energy policies: A case study for the city of Basel," Energy Policy, Elsevier, vol. 110(C), pages 176-190.
    19. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    20. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:41:y:2016:i:c:p:246-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.