IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v49y2007i4p406-420.html
   My bibliography  Save this article

Metal capital sustaining a North American city: Iron and copper in New Haven, CT

Author

Listed:
  • Drakonakis, Konstantine
  • Rostkowski, Katherine
  • Rauch, Jason
  • Graedel, T.E.
  • Gordon, R.B.

Abstract

A detailed inventory shows that an average resident of the City of New Haven depends on a per capita capital stock of 9200kg/c of iron and 144kg/c of copper in the city infrastructure, buildings, transportation systems, and equipment. Of the iron stock 28% is in items such as rail cars and ships in ocean trade not permanently within the city, and 22% is devoted to receiving and delivering oil fuel to the city and its surrounding communities. Copper is principally used in the distribution of electric power and in water piping within buildings. The city's 9200kg/c of iron stock-in-use is less than the 13,000kg/c national average due to New Haven's lack of heavy industry and relatively small number of large buildings. The 144kg/c of copper stock-in-use is only 58% of the overall value for the United States, but is comparable to that in cities such as Stockholm, Sweden. Attainment of a level of iron and copper services with contemporary technology in less developed countries to the level enjoyed in New Haven would require consumption of the presently identified world copper resources.

Suggested Citation

  • Drakonakis, Konstantine & Rostkowski, Katherine & Rauch, Jason & Graedel, T.E. & Gordon, R.B., 2007. "Metal capital sustaining a North American city: Iron and copper in New Haven, CT," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 406-420.
  • Handle: RePEc:eee:recore:v:49:y:2007:i:4:p:406-420
    DOI: 10.1016/j.resconrec.2006.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134490600125X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2006.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spatari, S. & Bertram, M. & Gordon, Robert B. & Henderson, K. & Graedel, T.E., 2005. "Twentieth century copper stocks and flows in North America: A dynamic analysis," Ecological Economics, Elsevier, vol. 54(1), pages 37-51, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ling & Cai, Zhijian & Yang, Jiameng & Chen, Yan & Yuan, Zengwei, 2014. "Quantification and spatial characterization of in-use copper stocks in Shanghai," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 134-143.
    2. Wallsten, Björn & Magnusson, Dick & Andersson, Simon & Krook, Joakim, 2015. "The economic conditions for urban infrastructure mining: Using GIS to prospect hibernating copper stocks," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 85-97.
    3. Yue, Qiang & Chai, Xicui & Zhao, Feng & He, Junhao & Li, Yun & Wang, Heming, 2023. "Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China," Resources Policy, Elsevier, vol. 80(C).
    4. Takahashi, Kazue Ichino & Terakado, Ryutaro & Nakamura, Jiro & Adachi, Yoshihiro & Elvidge, Christopher D. & Matsuno, Yasunari, 2010. "In-use stock analysis using satellite nighttime light observation data," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 196-200.
    5. Dai, Tiejun & Yue, Zhongchun, 2023. "The evolution and decoupling of in-use stocks in Beijing," Ecological Economics, Elsevier, vol. 203(C).
    6. Moynihan, Muiris C. & Allwood, Julian M., 2012. "The flow of steel into the construction sector," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 88-95.
    7. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    8. Recalde, Korinti & Wang, Jinlong & Graedel, T.E., 2008. "Aluminium in-use stocks in the state of Connecticut," Resources, Conservation & Recycling, Elsevier, vol. 52(11), pages 1271-1282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larona S. Teseletso & Tsuyoshi Adachi, 2022. "Long-Term Sustainability of Copper and Iron Based on a System Dynamics Model," Resources, MDPI, vol. 11(4), pages 1-19, April.
    2. Chen, Wei-Qiang & Graedel, T.E., 2012. "Dynamic analysis of aluminum stocks and flows in the United States: 1900–2009," Ecological Economics, Elsevier, vol. 81(C), pages 92-102.
    3. Matsuno, Yasunari & Hur, Tak & Fthenakis, Vasilis, 2012. "Dynamic modeling of cadmium substance flow with zinc and steel demand in Japan," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 83-90.
    4. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    5. Chen, Wu & Wang, Minxi & Li, Xin, 2016. "Analysis of copper flows in the United States: 1975–2012," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 67-76.
    6. Watson, Bryan C & Morris, Zack B & Weissburg, Marc & Bras, Bert, 2023. "System of system design-for-resilience heuristics derived from forestry case study variants," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Klinglmair, Manfred & Fellner, Johann, 2011. "Historical iron and steel recovery in times of raw material shortage: The case of Austria during World War I," Ecological Economics, Elsevier, vol. 72(C), pages 179-187.
    8. B. Muller, Daniel, 2006. "Stock dynamics for forecasting material flows--Case study for housing in The Netherlands," Ecological Economics, Elsevier, vol. 59(1), pages 142-156, August.
    9. Eckelman, Matthew J. & Daigo, Ichiro, 2008. "Markov chain modeling of the global technological lifetime of copper," Ecological Economics, Elsevier, vol. 67(2), pages 265-273, September.
    10. Luca Ciacci & Ivano Vassura & Fabrizio Passarini, 2017. "Urban Mines of Copper: Size and Potential for Recycling in the EU," Resources, MDPI, vol. 6(1), pages 1-14, January.
    11. Ciacci, Luca & Chen, Weiqiang & Passarini, Fabrizio & Eckelman, Matthew & Vassura, Ivano & Morselli, Luciano, 2013. "Historical evolution of anthropogenic aluminum stocks and flows in Italy," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 1-8.
    12. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    13. Jason Rauch, 2012. "The present understanding of Earth’s global anthrobiogeochemical metal cycles," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 25(1), pages 7-15, July.
    14. Takahashi, Kazue Ichino & Terakado, Ryutaro & Nakamura, Jiro & Adachi, Yoshihiro & Elvidge, Christopher D. & Matsuno, Yasunari, 2010. "In-use stock analysis using satellite nighttime light observation data," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 196-200.
    15. Ryosuke Yokoi & Jun Nakatani & Yuichi Moriguchi, 2018. "Calculation of Characterization Factors of Mineral Resources Considering Future Primary Resource Use Changes: A Comparison between Iron and Copper," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    16. Chen, Wei-Qiang & Shi, Lei, 2012. "Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 18-28.
    17. Seo, Yuna & Morimoto, Shinichirou, 2014. "Comparison of dysprosium security strategies in Japan for 2010–2030," Resources Policy, Elsevier, vol. 39(C), pages 15-20.
    18. Zhou, Yucheng & Yang, Ning & Hu, Shanying, 2013. "Industrial metabolism of PVC in China: A dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 33-40.
    19. Song, Yi & Cheng, Jinhua & Zhang, Yijun & Dai, Tao & Huang, Jianbai, 2021. "Direct and indirect effects of heterogeneous technical change on metal consumption intensity: Evidence from G7 and BRICS countries," Resources Policy, Elsevier, vol. 71(C).
    20. Ermelinda M. Harper, 2008. "A Product-Level Approach to Historical Material Flow Analysis," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 768-784, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:49:y:2007:i:4:p:406-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.