IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v75y2022ics0301420721005250.html
   My bibliography  Save this article

Copper cross-market volatility transition based on a coupled hidden Markov model and the complex network method

Author

Listed:
  • Shen, Junjie
  • Huang, Shupei

Abstract

Copper, as a strategic resource, has attracted widespread attention due to its price changes. Copper's futures prices and spot prices tend to be highly correlated in different countries. The copper market price change should consider the relationship between market trends of different countries, especially in the current situation where economic globalization and financial integration are inevitable. The volatility transition between datasets of different countries presents the characteristics of nonlinearity, interaction, dynamics and heterogeneity. To explore the cross-market transition of copper price fluctuations, this paper proposes a hybrid method of the coupled hidden Markov model (CHMM) and complex network. The coupled hidden Markov model (CHMM) is used to identify the transition characteristics of the market price trends, and the complex network method is used to analyze the evolutionary characteristics of the market state transition. We take the copper futures and spot market prices between the U.S., China, and the UK between January 2003 and December 2019 as the object. The results show that the copper futures market's state transition has a clustering effect, the price rise is easy to maintain, and the decline is rapid and easy to transfer. The relationship between daily markets is more volatile, and weekly and monthly are more stable. The British copper futures market has shown advantages in terms of transition ability, assimilation ability, media ability and transfer structure, while the influence of China's copper futures market is relatively weak. In addition, during the financial crisis, the UK spot market played an important role in the frequent declining transition. The nonlinear measurement model and conclusion established in this paper provide a new framework and analysis tool for explaining the volatility transition of the copper market.

Suggested Citation

  • Shen, Junjie & Huang, Shupei, 2022. "Copper cross-market volatility transition based on a coupled hidden Markov model and the complex network method," Resources Policy, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721005250
    DOI: 10.1016/j.resourpol.2021.102518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721005250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    2. Ze Wang & Huajiao Li & Renwu Tang, 2019. "Network analysis of coal mine hazards based on text mining and link prediction," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(07), pages 1-22, July.
    3. Mensi, Walid & Sensoy, Ahmet & Aslan, Aylin & Kang, Sang Hoon, 2019. "High-frequency asymmetric volatility connectedness between Bitcoin and major precious metals markets," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    4. Xiarchos, Irene M. & Fletcher, Jerald J., 2009. "Price and volatility transmission between primary and scrap metal markets," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 664-673.
    5. Dehghani, Hesam & Bogdanovic, Dejan, 2018. "Copper price estimation using bat algorithm," Resources Policy, Elsevier, vol. 55(C), pages 55-61.
    6. Huang, Xiaohong & Huang, Shupei, 2020. "Identifying the comovement of price between China's and international crude oil futures: A time-frequency perspective," International Review of Financial Analysis, Elsevier, vol. 72(C).
    7. Liu, Chang & Hu, Zhenhua & Li, Yan & Liu, Shaojun, 2017. "Forecasting copper prices by decision tree learning," Resources Policy, Elsevier, vol. 52(C), pages 427-434.
    8. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    9. Kang, Sang Hoon & Yoon, Seong-Min, 2016. "Dynamic spillovers between Shanghai and London nonferrous metal futures markets," Finance Research Letters, Elsevier, vol. 19(C), pages 181-188.
    10. Liu, Zhenya & Wang, Shixuan, 2017. "Decoding Chinese stock market returns: Three-state hidden semi-Markov model," Pacific-Basin Finance Journal, Elsevier, vol. 44(C), pages 127-149.
    11. Geman, Hélyette & Smith, William O., 2013. "Theory of storage, inventory and volatility in the LME base metals," Resources Policy, Elsevier, vol. 38(1), pages 18-28.
    12. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    13. Zhang, Mengqi & Jiang, Xin & Fang, Zehua & Zeng, Yue & Xu, Ke, 2019. "High-order Hidden Markov Model for trend prediction in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 1-12.
    14. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    15. Guo, Sui & Li, Huajiao & An, Haizhong & Sun, Qingru & Hao, Xiaoqing & Liu, Yanxin, 2019. "Steel product prices transmission activities in the midstream industrial chain and global markets," Resources Policy, Elsevier, vol. 60(C), pages 56-71.
    16. Aruga, Kentaka & Managi, Shunsuke, 2011. "Testing the international linkage in the platinum-group metal futures markets," Resources Policy, Elsevier, vol. 36(4), pages 339-345.
    17. Kaabia, Olfa & Abid, Ilyes & Guesmi, Khaled, 2013. "Does Bayesian shrinkage help to better reflect what happened during the subprime crisis?," Economic Modelling, Elsevier, vol. 31(C), pages 423-432.
    18. Liu, Xueyong & An, Haizhong & Huang, Shupei & Wen, Shaobo, 2017. "The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 374-383.
    19. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    20. Cifuentes, Sebastián & Cortazar, Gonzalo & Ortega, Hector & Schwartz, Eduardo S., 2020. "Expected prices, futures prices and time-varying risk premiums: The case of copper," Resources Policy, Elsevier, vol. 69(C).
    21. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    22. de Souza e Silva, Edmundo G. & Legey, Luiz F.L. & de Souza e Silva, Edmundo A., 2010. "Forecasting oil price trends using wavelets and hidden Markov models," Energy Economics, Elsevier, vol. 32(6), pages 1507-1519, November.
    23. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    24. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    25. Hyun-Bock Lee & Cheol-Ho Park, 2020. "Spillover effects in the global copper futures markets: asymmetric multivariate GARCH approaches," Applied Economics, Taylor & Francis Journals, vol. 52(54), pages 5909-5920, November.
    26. Liu, Qingfu & An, Yunbi, 2011. "Information transmission in informationally linked markets: Evidence from US and Chinese commodity futures markets," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 778-795, September.
    27. Guo, Yaoqi & Yao, Shanshan & Cheng, Hui & Zhu, Wensong, 2020. "China's copper futures market efficiency analysis: Based on nonlinear Granger causality and multifractal methods," Resources Policy, Elsevier, vol. 68(C).
    28. Guidolin, Massimo & Hansen, Erwin & Pedio, Manuela, 2019. "Cross-asset contagion in the financial crisis: A Bayesian time-varying parameter approach," Journal of Financial Markets, Elsevier, vol. 45(C), pages 83-114.
    29. Hu, Haiqing & Chen, Di & Sui, Bo & Zhang, Lang & Wang, Yinyin, 2020. "Price volatility spillovers between supply chain and innovation of financial pledges in China," Economic Modelling, Elsevier, vol. 89(C), pages 397-413.
    30. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Cuixia & Xu, Yufei & Geng, Yong & Xiao, Shijiang, 2022. "Uncovering terbium metabolism in China: A dynamic material flow analysis," Resources Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    2. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    3. Chen, Xiangyu & Tongurai, Jittima, 2022. "Spillovers and interdependency across base metals: Evidence from China's futures and spot markets," Resources Policy, Elsevier, vol. 75(C).
    4. Liu, Kailei & Cheng, Jinhua & Yi, Jiahui, 2022. "Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform," Resources Policy, Elsevier, vol. 75(C).
    5. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    6. Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
    7. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    8. Fernandez, Viviana & Pastén-Henríquez, Boris & Tapia-Griñen, Pablo & Wagner, Rodrigo, 2023. "Commodity prices under the threat of operational disruptions: Labor strikes at copper mines," Journal of Commodity Markets, Elsevier, vol. 32(C).
    9. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    10. Nabavi, Zohre & Mirzehi, Mohammad & Dehghani, Hesam, 2024. "Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis," Resources Policy, Elsevier, vol. 90(C).
    11. Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
    12. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    13. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    14. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    15. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    16. Luo, Hongyuan & Wang, Deyun & Cheng, Jinhua & Wu, Qiaosheng, 2022. "Multi-step-ahead copper price forecasting using a two-phase architecture based on an improved LSTM with novel input strategy and error correction," Resources Policy, Elsevier, vol. 79(C).
    17. Cifuentes, Sebastián & Cortazar, Gonzalo & Ortega, Hector & Schwartz, Eduardo S., 2020. "Expected prices, futures prices and time-varying risk premiums: The case of copper," Resources Policy, Elsevier, vol. 69(C).
    18. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    19. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    20. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721005250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.