IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v517y2019icp1-12.html
   My bibliography  Save this article

High-order Hidden Markov Model for trend prediction in financial time series

Author

Listed:
  • Zhang, Mengqi
  • Jiang, Xin
  • Fang, Zehua
  • Zeng, Yue
  • Xu, Ke

Abstract

Financial price series trend prediction is an essential problem which has been discussed extensively using tools and techniques of economic physics and machine learning. Time dependence and volatility issues in this problem have made Hidden Markov Model (HMM) a useful tool in predicting the states of stock market. In this paper, we present an approach to predict the stock market price trend based on high-order HMM. Different from the commonly used first-order HMM, short and long-term time dependence are both considered in the high order HMM. By introducing a dimension reduction method which could transform the high-dimensional state vector of high-order HMM into a single one, we present a dynamic high-order HMM trading strategy to predict and trade CSI 300 and S&P 500 stock index for the next day given historical data. In our approach, we make a statistic of the daily returns in the history to demonstrate the relationship between hidden states and the price change trend. Experiments on CSI 300 and S&P 500 index illustrate that high-order HMM has preferable ability to identify market price trend than first-order one. Thus, the high-order HMM has higher accuracy and lower risk than the first-order model in predicting the index price trend.

Suggested Citation

  • Zhang, Mengqi & Jiang, Xin & Fang, Zehua & Zeng, Yue & Xu, Ke, 2019. "High-order Hidden Markov Model for trend prediction in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 1-12.
  • Handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:1-12
    DOI: 10.1016/j.physa.2018.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314018
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Johnson, Neil F. & Lamper, David & Jefferies, Paul & Hart, Michael L. & Howison, Sam, 2001. "Application of multi-agent games to the prediction of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 222-227.
    3. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
    4. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    5. Neil F. Johnson & David Lamper & Paul Jefferies & Michael L. Hart & Sam Howison, 2001. "Application of multi-agent games to the prediction of financial time-series," OFRC Working Papers Series 2001mf04, Oxford Financial Research Centre.
    6. N. F. Johnson & D. Lamper & P. Jefferies & M. L. Hart & S. Howison, 2001. "Application of multi-agent games to the prediction of financial time-series," Papers cond-mat/0105303, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Junjie & Huang, Shupei, 2022. "Copper cross-market volatility transition based on a coupled hidden Markov model and the complex network method," Resources Policy, Elsevier, vol. 75(C).
    2. Wu, Menglong & Ye, Yicheng & Ke, Lihua & Hu, Nanyan & Wang, Qihu & Li, Yufei, 2023. "Characteristics analysis and situation prediction of production safety accidents in non-coal mining," Resources Policy, Elsevier, vol. 83(C).
    3. Yu, Xing & Shen, Xilin & Li, Yanyan & Gong, Xue, 2023. "Selective hedging strategies for crude oil futures based on market state expectations," Global Finance Journal, Elsevier, vol. 57(C).
    4. Xun Huang & Huiyue Tang, 2022. "Measuring multi‐volatility states of financial markets based on multifractal clustering model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 422-434, April.
    5. Yu, Xing & Li, Yanyan & Zhao, Qian, 2024. "Research on optimization strategy of futures hedging dependent on market state," Applied Energy, Elsevier, vol. 373(C).
    6. Lu-Tao Zhao & Shun-Gang Wang & Zhi-Gang Zhang, 2020. "Oil Price Forecasting Using a Time-Varying Approach," Energies, MDPI, vol. 13(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    2. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    3. Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
    4. Gou, Chengling, 2006. "Deduction of initial strategy distributions of agents in mix-game models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 633-640.
    5. Groot, Robert D. & Musters, Pieter A.D., 2005. "Minority Game of price promotions in fast moving consumer goods markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 533-547.
    6. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    7. Guglielmo Maria Caporale & Antoaneta Serguieva & Hao Wu, 2009. "Financial contagion: evolutionary optimization of a multinational agent‐based model," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 16(1‐2), pages 111-125, January.
    8. Stefan, F.M. & Atman, A.P.F., 2015. "Is there any connection between the network morphology and the fluctuations of the stock market index?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 630-641.
    9. J. Wiesinger & D. Sornette & J. Satinover, 2013. "Reverse Engineering Financial Markets with Majority and Minority Games Using Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 41(4), pages 475-492, April.
    10. Daye Li & Rongrong Li & Qiankun Sun, 2017. "How the heterogeneity in investment horizons affects market trends," Applied Economics, Taylor & Francis Journals, vol. 49(15), pages 1473-1482, March.
    11. Wei, J.R. & Huang, J.P. & Hui, P.M., 2013. "An agent-based model of stock markets incorporating momentum investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2728-2735.
    12. Derveeuw, Julien, 2005. "Market dynamics and agents behaviors: a computational approach," MPRA Paper 4916, University Library of Munich, Germany.
    13. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    14. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    15. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, October.
    16. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    17. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    18. Constantinos Kardaras & Jan Obłój & Eckhard Platen, 2017. "The Numéraire Property And Long-Term Growth Optimality For Drawdown-Constrained Investments," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 68-95, January.
    19. Tavakoli Baghdadabad, Mohammad Reza, 2014. "Average drawdown risk reduction and risk tolerances," Research in Economics, Elsevier, vol. 68(3), pages 264-276.
    20. Wu, Shue-Jen & Lee, Wei-Ming, 2015. "Predicting severe simultaneous bear stock markets using macroeconomic variables as leading indicators," Finance Research Letters, Elsevier, vol. 13(C), pages 196-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.