IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v66y2020ics0301420719307299.html
   My bibliography  Save this article

Does the price of strategic commodities respond to U.S. partisan conflict?

Author

Listed:
  • Jiang, Yong
  • Ren, Yi-Shuai
  • Ma, Chao-Qun
  • Liu, Jiang-Long
  • Sharp, Basil

Abstract

A noteworthy feature of U.S. politics in recent years is serious partisan conflict, which has led to intensifying polarization and exacerbating high policy uncertainty. The US is a significant player in oil and gold markets. Oil and gold also form the basis of important strategic reserves in the US. We investigate whether U.S. partisan conflict affects the returns and price volatility of oil and gold using a parametric test of Granger causality in quantiles. The empirical results suggest that U.S. partisan conflict has an effect on the returns of oil and gold, and the effects are concentrated at the tail of the conditional distribution of returns. More specifically, the partisan conflict mainly affects oil returns when the crude oil market is in a bearish state (lower quantiles). By contrast, partisan conflict matters for gold returns only when the gold market is in a bullish scenario (higher quantiles). In addition, for the volatility of oil and gold, the predictability of partisan conflict index virtually covers the entire distribution of volatility.

Suggested Citation

  • Jiang, Yong & Ren, Yi-Shuai & Ma, Chao-Qun & Liu, Jiang-Long & Sharp, Basil, 2020. "Does the price of strategic commodities respond to U.S. partisan conflict?," Resources Policy, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:jrpoli:v:66:y:2020:i:c:s0301420719307299
    DOI: 10.1016/j.resourpol.2020.101617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719307299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2020.101617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baur, Dirk G. & Dimpfl, Thomas, 2016. "Googling gold and mining bad news," Resources Policy, Elsevier, vol. 50(C), pages 306-311.
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    4. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    5. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    6. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    7. Azzimonti, Marina, 2018. "Partisan conflict and private investment," Journal of Monetary Economics, Elsevier, vol. 93(C), pages 114-131.
    8. Kang, Wensheng & Ratti, Ronald A., 2013. "Structural oil price shocks and policy uncertainty," Economic Modelling, Elsevier, vol. 35(C), pages 314-319.
    9. Wang, Qingfeng & Sun, Xu, 2017. "Crude oil price: Demand, supply, economic activity, economic policy uncertainty and wars – From the perspective of structural equation modelling (SEM)," Energy, Elsevier, vol. 133(C), pages 483-490.
    10. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    11. Gil-Alana, Luis A. & Chang, Shinhye & Balcilar, Mehmet & Aye, Goodness C. & Gupta, Rangan, 2015. "Persistence of precious metal prices: A fractional integration approach with structural breaks," Resources Policy, Elsevier, vol. 44(C), pages 57-64.
    12. Joshua C. C. Chan & Eric Eisenstat, 2015. "Marginal Likelihood Estimation with the Cross-Entropy Method," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 256-285, March.
    13. Uddin, Gazi Salah & Bekiros, Stelios & Ahmed, Ali, 2018. "The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 30-39.
    14. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    15. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    16. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    17. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    18. Mehmet Balcilar & Stelios Bekiros & Rangan Gupta, 2017. "The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method," Empirical Economics, Springer, vol. 53(3), pages 879-889, November.
    19. Berna Kirkulak Uludag & Zorikto Lkhamazhapov, 2014. "Long memory and structural breaks in the returns and volatility of gold: evidence from Turkey," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3777-3787, November.
    20. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    21. Aloui, Riadh & Gupta, Rangan & Miller, Stephen M., 2016. "Uncertainty and crude oil returns," Energy Economics, Elsevier, vol. 55(C), pages 92-100.
    22. Hammoudeh, Shawkat & Yuan, Yuan, 2008. "Metal volatility in presence of oil and interest rate shocks," Energy Economics, Elsevier, vol. 30(2), pages 606-620, March.
    23. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    24. Aye, Goodness C. & Chang, Tsangyao & Gupta, Rangan, 2016. "Is gold an inflation-hedge? Evidence from an interrupted Markov-switching cointegration model," Resources Policy, Elsevier, vol. 48(C), pages 77-84.
    25. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    26. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    27. Jeong, Kiho & Härdle, Wolfgang K. & Song, Song, 2012. "A Consistent Nonparametric Test For Causality In Quantile," Econometric Theory, Cambridge University Press, vol. 28(4), pages 861-887, August.
    28. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    29. Ji, Qiang & Bouri, Elie & Roubaud, David, 2018. "Dynamic network of implied volatility transmission among US equities, strategic commodities, and BRICS equities," International Review of Financial Analysis, Elsevier, vol. 57(C), pages 1-12.
    30. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    31. Balcilar, Mehmet & Gupta, Rangan & Pierdzioch, Christian, 2016. "Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test," Resources Policy, Elsevier, vol. 49(C), pages 74-80.
    32. Gupta, Rangan & Mwamba, John W. Muteba & Wohar, Mark E., 2018. "The role of partisan conflict in forecasting the U.S. equity premium: A nonparametric approach," Finance Research Letters, Elsevier, vol. 25(C), pages 131-136.
    33. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    34. Dutta, Anupam & Bouri, Elie & Roubaud, David, 2019. "Nonlinear relationships amongst the implied volatilities of crude oil and precious metals," Resources Policy, Elsevier, vol. 61(C), pages 473-478.
    35. Balcilar, Mehmet & Bonato, Matteo & Demirer, Riza & Gupta, Rangan, 2017. "The effect of investor sentiment on gold market return dynamics: Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 51(C), pages 77-84.
    36. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
    37. Bouri, Elie & Roubaud, David & Jammazi, Rania & Assaf, Ata, 2017. "Uncovering frequency domain causality between gold and the stock markets of China and India: Evidence from implied volatility indices," Finance Research Letters, Elsevier, vol. 23(C), pages 23-30.
    38. Kang, Wensheng & Ratti, Ronald A., 2013. "Oil shocks, policy uncertainty and stock market return," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 305-318.
    39. Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
    40. Li, Sile & Lucey, Brian M., 2017. "Reassessing the role of precious metals as safe havens–What colour is your haven and why?," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 1-14.
    41. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    42. Bouri, Elie & Jain, Anshul & Biswal, P.C. & Roubaud, David, 2017. "Cointegration and nonlinear causality amongst gold, oil, and the Indian stock market: Evidence from implied volatility indices," Resources Policy, Elsevier, vol. 52(C), pages 201-206.
    43. Tully, Edel & Lucey, Brian M., 2007. "A power GARCH examination of the gold market," Research in International Business and Finance, Elsevier, vol. 21(2), pages 316-325, June.
    44. Raza, Syed Ali & Shah, Nida & Shahbaz, Muhammad, 2018. "Does economic policy uncertainty influence gold prices? Evidence from a nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 57(C), pages 61-68.
    45. Bilgin, Mehmet Huseyin & Gozgor, Giray & Lau, Chi Keung Marco & Sheng, Xin, 2018. "The effects of uncertainty measures on the price of gold," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 1-7.
    46. Gupta, Rangan & Pierdzioch, Christian & Selmi, Refk & Wohar, Mark E., 2018. "Does partisan conflict predict a reduction in US stock market (realized) volatility? Evidence from a quantile-on-quantile regression model☆," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 87-96.
    47. Jun Cai & Yan‐Leung Cheung & Michael C. S. Wong, 2001. "What moves the gold market?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 257-278, March.
    48. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    49. Zhou, Zhongbao & Jiang, Yong & Liu, Yan & Lin, Ling & Liu, Qing, 2019. "Does international oil volatility have directional predictability for stock returns? Evidence from BRICS countries based on cross-quantilogram analysis," Economic Modelling, Elsevier, vol. 80(C), pages 352-382.
    50. Gallo, Andres & Mason, Paul & Shapiro, Steve & Fabritius, Michael, 2010. "What is behind the increase in oil prices? Analyzing oil consumption and supply relationship with oil price," Energy, Elsevier, vol. 35(10), pages 4126-4141.
    51. Rehman, Mobeen Ur & Bouri, Elie & Eraslan, Veysel & Kumar, Satish, 2019. "Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    52. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    53. Kim, Gil & Vera, David, 2019. "Recent drivers of the real oil price: Revisiting and extending Kilian's (2009) findings," Energy Economics, Elsevier, vol. 82(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beyer, Deborah B. & Fan, Zaifeng S., 2023. "The calming effects of conflict: The impact of partisan conflict on market volatility," International Review of Financial Analysis, Elsevier, vol. 85(C).
    2. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    3. Nicholas Apergis & Ioannis Chatziantoniou, 2022. "US partisan conflict shocks and international stock market returns," Empirical Economics, Springer, vol. 63(6), pages 2817-2854, December.
    4. Qin, Meng & Su, Chi-Wei & Tao, Ran & Umar, Muhammad, 2020. "Is factionalism a push for gold price?," Resources Policy, Elsevier, vol. 67(C).
    5. Rufei Zhang & Haizhen Zhang & Qingzhu Fan & Wang Gao & Xue Luo & Shixiong Yang, 2022. "Partisan Conflict, National Security Policy Uncertainty and Tourism," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    6. Chatziantoniou, Ioannis & Degiannakis, Stavros & Delis, Panagiotis & Filis, George, 2021. "Forecasting oil price volatility using spillover effects from uncertainty indices," Finance Research Letters, Elsevier, vol. 42(C).
    7. Li, Jingwen & Wang, Yue & Song, Yubing & Su, Chi Wei, 2023. "How resistant is gold to stress? New evidence from global supply chain," Resources Policy, Elsevier, vol. 85(PB).
    8. Qin, Meng & Su, Chi-Wei & Pirtea, Marilen Gabriel & Dumitrescu Peculea, Adelina, 2023. "The essential role of Russian geopolitics: A fresh perception into the gold market," Resources Policy, Elsevier, vol. 81(C).
    9. Umar, Muhammad & Su, Chi-Wei & Rizvi, Syed Kumail Abbas & Shao, Xue-Feng, 2021. "Bitcoin: A safe haven asset and a winner amid political and economic uncertainties in the US?," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Qiao, Xingzhi & Zhu, Huiming & Zhang, Zhongqingyang & Mao, Weifang, 2022. "Time-frequency transmission mechanism of EPU, investor sentiment and financial assets: A multiscale TVP-VAR connectedness analysis," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Jiang & Yi-Shuai Ren & Chao-Qun Ma & Jiang-Long Liu & Basil Sharp, 2018. "Does the price of strategic commodities respond to U.S. Partisan Conflict?," Papers 1810.08396, arXiv.org, revised Feb 2020.
    2. Nicholas Apergis & Tasawar Hayat & Tareq Saeed, 2021. "Cyclicality of commodity markets with respect to the U.S. economic policy uncertainty based on granger causality in quantiles," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 50(1), February.
    3. Troster, Victor & Bouri, Elie & Roubaud, David, 2019. "A quantile regression analysis of flights-to-safety with implied volatilities," Resources Policy, Elsevier, vol. 62(C), pages 482-495.
    4. Luu Duc Huynh, Toan, 2020. "The effect of uncertainty on the precious metals market: New insights from Transfer Entropy and Neural Network VAR," Resources Policy, Elsevier, vol. 66(C).
    5. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    6. Rasool Dehghanzadeh Shahabad & Mehmet Balcilar, 2022. "Modelling the Dynamic Interaction between Economic Policy Uncertainty and Commodity Prices in India: The Dynamic Autoregressive Distributed Lag Approach," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    7. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    8. Bonato, Matteo & Gupta, Rangan & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Moments-based spillovers across gold and oil markets," Energy Economics, Elsevier, vol. 89(C).
    9. Maghyereh, Aktham & Abdoh, Hussein, 2020. "The tail dependence structure between investor sentiment and commodity markets," Resources Policy, Elsevier, vol. 68(C).
    10. Yang, Kun & Wei, Yu & Li, Shouwei & Liu, Liang & Wang, Lei, 2021. "Global financial uncertainties and China’s crude oil futures market: Evidence from interday and intraday price dynamics," Energy Economics, Elsevier, vol. 96(C).
    11. Sun, Xiaolei & Chen, Xiuwen & Wang, Jun & Li, Jianping, 2020. "Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    12. Tanin, Tauhidul Islam & Sarker, Ashutosh & Hammoudeh, Shawkat & Shahbaz, Muhammad, 2021. "Do volatility indices diminish gold's appeal as a safe haven to investors before and during the COVID-19 pandemic?," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 214-235.
    13. Aharon, David Y. & Qadan, Mahmoud, 2018. "What drives the demand for information in the commodity market?," Resources Policy, Elsevier, vol. 59(C), pages 532-543.
    14. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    15. Jeng-Bau Lin & Chin-Chia Liang & Wei Tsai, 2019. "Nonlinear Relationships between Oil Prices and Implied Volatilities: Providing More Valuable Information," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    16. Shahbaz, Muhammad & Balcilar, Mehmet & Abidin Ozdemir, Zeynel, 2017. "Does oil predict gold? A nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 52(C), pages 257-265.
    17. Apergis, Nicholas & Hayat, Tasawar & Saeed, Tareq, 2021. "US partisan conflict uncertainty and oil prices," Energy Policy, Elsevier, vol. 150(C).
    18. Gozgor, Giray & Lau, Chi Keung Marco & Sheng, Xin & Yarovaya, Larisa, 2019. "The role of uncertainty measures on the returns of gold," Economics Letters, Elsevier, vol. 185(C).
    19. Cui, Moyang & Wong, Wing-Keung & Wisetsri, Worakamol & Mabrouk, Fatma & Muda, Iskandar & Li, Zeyun & Hassan, Marria, 2023. "Do oil, gold and metallic price volatilities prove gold as a safe haven during COVID-19 pandemic? Novel evidence from COVID-19 data," Resources Policy, Elsevier, vol. 80(C).
    20. Choudhry, Taufiq & Hassan, Syed S. & Shabi, Sarosh, 2015. "Relationship between gold and stock markets during the global financial crisis: Evidence from nonlinear causality tests," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 247-256.

    More about this item

    Keywords

    U.S. partisan conflict; Granger causality in quantiles; Oil prices; Gold prices;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:66:y:2020:i:c:s0301420719307299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.