IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v105y2021ics0305048321001109.html
   My bibliography  Save this article

The influence of online review adoption on the profitability of capacitated supply chains

Author

Listed:
  • Huang, Shupeng
  • Potter, Andrew
  • Eyers, Daniel
  • Li, Qinyun

Abstract

The paper explores the influence of online review adoption on supply chain profitability under the presence of a capacity constraint. Nowadays, customers increasingly rely on online reviews for decision making, and online retailers regard reviews as a norm. Although online reviews have been extensively examined in marketing disciplines, little research has been conducted to investigate their influence from a supply chain perspective. In addition, previous research has largely focused on how online review information can influence customer purchase behaviours, but ignores the more basic decision: whether and when companies should adopt reviews. This paper examines the online review adoption decision from a capacitated supply chain perspective through mathematical modelling and simulation. The simulation considers the influence of variables including online review adoption decision, capacity constraint level, lost sales penalty level, and product quality estimation on supply chain profitability. Generally, we find that online reviews can bring more profit to the supply chain than without online reviews, although such influence is moderated by the other three variables. The findings reveal the complexity of the contextual variable impacts on online review adoption, and demonstrate that decisions concerning the adoption of online reviews should take all supply-chain-related variables into consideration rather than only aiming for increasing customer orders.

Suggested Citation

  • Huang, Shupeng & Potter, Andrew & Eyers, Daniel & Li, Qinyun, 2021. "The influence of online review adoption on the profitability of capacitated supply chains," Omega, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001109
    DOI: 10.1016/j.omega.2021.102501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xiande & Xie, Jinxing & Leung, Janny, 2002. "The impact of forecasting model selection on the value of information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 142(2), pages 321-344, October.
    2. Thakur, Rakhi, 2018. "Customer engagement and online reviews," Journal of Retailing and Consumer Services, Elsevier, vol. 41(C), pages 48-59.
    3. Boute, Robert N. & Disney, Stephen M. & Lambrecht, Marc R. & Van Houdt, Benny, 2009. "Designing replenishment rules in a two-echelon supply chain with a flexible or an inflexible capacity strategy," International Journal of Production Economics, Elsevier, vol. 119(1), pages 187-198, May.
    4. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    5. Young Kwark & Jianqing Chen & Srinivasan Raghunathan, 2014. "Online Product Reviews: Implications for Retailers and Competing Manufacturers," Information Systems Research, INFORMS, vol. 25(1), pages 93-110, March.
    6. Glock, C. H. & Ries, J. M., 2013. "Reducing lead-time risk through multiple sourcing: the case of stochastic demand and variable lead-time (angenommen)," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57810, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Yiangos Papanastasiou & Nicos Savva, 2017. "Dynamic Pricing in the Presence of Social Learning and Strategic Consumers," Management Science, INFORMS, vol. 63(4), pages 919-939, April.
    8. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 93-125.
    9. Sezgen, Eren & Mason, Keith J. & Mayer, Robert, 2019. "Voice of airline passenger: A text mining approach to understand customer satisfaction," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 65-74.
    10. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    11. Hou, Ruiqi & de Koster, René & Yu, Yugang, 2018. "Service investment for online retailers with social media—Does it pay off?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 606-628.
    12. Hing Kai Chan & Ewelina Lacka & Rachel W.Y. Yee & Ming K. Lim, 2017. "The role of social media data in operations and production management," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5027-5036, September.
    13. Borja Ponte & Xun Wang & David de la Fuente & Stephen M. Disney, 2017. "Exploring nonlinear supply chains: the dynamics of capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4053-4067, July.
    14. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    15. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "Information sharing in supply chains with heterogeneous retailers," Omega, Elsevier, vol. 79(C), pages 116-132.
    16. Gianfranco Walsh & Michael Möhring, 2017. "Effectiveness of product return-prevention instruments: Empirical evidence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(4), pages 341-350, November.
    17. Glock, C. H., 2012. "Lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57816, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Yang, Wenjuan & Zhang, Jiantong & Yan, Hong, 2021. "Impacts of online consumer reviews on a dual-channel supply chain," Omega, Elsevier, vol. 101(C).
    19. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    20. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    21. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    22. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," Post-Print hal-02312141, HAL.
    23. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    24. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    25. Raymond Yiu Keung Lau & Wenping Zhang & Wei Xu, 2018. "Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1775-1794, October.
    26. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    27. Hui Zhang & Huguang Rao & Junzheng Feng, 2018. "Product innovation based on online review data mining: a case study of Huawei phones," Electronic Commerce Research, Springer, vol. 18(1), pages 3-22, March.
    28. Eric W. K. See-To & Eric W. T. Ngai, 2018. "Customer reviews for demand distribution and sales nowcasting: a big data approach," Annals of Operations Research, Springer, vol. 270(1), pages 415-431, November.
    29. Potter, Andrew & Lalwani, Chandra, 2008. "Investigating the impact of demand amplification on freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 835-846, September.
    30. Yang, Taho & Wen, Yuan-Feng & Wang, Fang-Fang, 2011. "Evaluation of robustness of supply chain information-sharing strategies using a hybrid Taguchi and multiple criteria decision-making method," International Journal of Production Economics, Elsevier, vol. 134(2), pages 458-466, December.
    31. Jian Jin & Ying Liu & Ping Ji & Hongguang Liu, 2016. "Understanding big consumer opinion data for market-driven product design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 3019-3041, May.
    32. Lei Zhang & Xuening Chu & Deyi Xue, 2019. "Identification of the to-be-improved product features based on online reviews for product redesign," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2464-2479, April.
    33. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    34. Anyan Qi & Hyun-Soo Ahn & Amitabh Sinha, 2015. "Investing in a Shared Supplier in a Competitive Market: Stochastic Capacity Case," Production and Operations Management, Production and Operations Management Society, vol. 24(10), pages 1537-1551, October.
    35. Minnema, Alec & Bijmolt, Tammo H.A. & Gensler, Sonja & Wiesel, Thorsten, 2016. "To Keep or Not to Keep: Effects of Online Customer Reviews on Product Returns," Journal of Retailing, Elsevier, vol. 92(3), pages 253-267.
    36. Gupta, Varun & Ivanov, Dmitry & Choi, Tsan-Ming, 2021. "Competitive pricing of substitute products under supply disruption," Omega, Elsevier, vol. 101(C).
    37. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    38. Glock, Christoph H., 2012. "Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 37-44.
    39. Van Nguyen, Truong & Zhou, Li & Chong, Alain Yee Loong & Li, Boying & Pu, Xiaodie, 2020. "Predicting customer demand for remanufactured products: A data-mining approach," European Journal of Operational Research, Elsevier, vol. 281(3), pages 543-558.
    40. Lodree, Emmett Jr., 2007. "Advanced supply chain planning with mixtures of backorders, lost sales, and lost contract," European Journal of Operational Research, Elsevier, vol. 181(1), pages 168-183, August.
    41. Alain Yee Loong Chong & Eugene Ch’ng & Martin J. Liu & Boying Li, 2017. "Predicting consumer product demands via Big Data: the roles of online promotional marketing and online reviews," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5142-5156, September.
    42. Freeman, Nickolas & Mittenthal, John & Keskin, Burcu & Melouk, Sharif, 2018. "Sourcing strategies for a capacitated firm subject to supply and demand uncertainty," Omega, Elsevier, vol. 77(C), pages 127-142.
    43. Hill, R.M., 2007. "Continuous-review, lost-sales inventory models with Poisson demand, a fixed lead time and no fixed order cost," European Journal of Operational Research, Elsevier, vol. 176(2), pages 956-963, January.
    44. A A Syntetos & N C Georgantzas & J E Boylan & B C Dangerfield, 2011. "Judgement and supply chain dynamics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1138-1158, June.
    45. Fan, Zhi-Ping & Che, Yu-Jie & Chen, Zhen-Yu, 2017. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis," Journal of Business Research, Elsevier, vol. 74(C), pages 90-100.
    46. Cannella, Salvatore & Dominguez, Roberto & Framinan, Jose M., 2017. "Inventory record inaccuracy – The impact of structural complexity and lead time variability," Omega, Elsevier, vol. 68(C), pages 123-138.
    47. Wenjing Shen & Izak Duenyas & Roman Kapuscinski, 2011. "New Product Diffusion Decisions Under Supply Constraints," Management Science, INFORMS, vol. 57(10), pages 1802-1810, October.
    48. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    49. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    50. Wenqiang Xiao & Yi Xu, 2018. "Should an Online Retailer Penalize Its Independent Sellers for Stockout?," Production and Operations Management, Production and Operations Management Society, vol. 27(6), pages 1124-1132, June.
    51. Li, Qinyun & Disney, Stephen M. & Gaalman, Gerard, 2014. "Avoiding the bullwhip effect using Damped Trend forecasting and the Order-Up-To replenishment policy," International Journal of Production Economics, Elsevier, vol. 149(C), pages 3-16.
    52. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    53. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," System Dynamics Review, System Dynamics Society, vol. 33(3-4), pages 254-279, July.
    54. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qinyun & Gaalman, Gerard & Disney, Stephen M., 2023. "On the equivalence of the proportional and damped trend order-up-to policies: An eigenvalue analysis," International Journal of Production Economics, Elsevier, vol. 265(C).
    2. Çavdar, Bahar & Erkip, Nesim, 2023. "Word-of-Mouth on Action: Analysis of Optimal Shipment Policy When Customers are Resentful," Omega, Elsevier, vol. 118(C).
    3. Deligiannis, Michalis & Liberopoulos, George, 2023. "Dynamic ordering and buyer selection policies when service affects future demand," Omega, Elsevier, vol. 118(C).
    4. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    2. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "Information sharing in supply chains with heterogeneous retailers," Omega, Elsevier, vol. 79(C), pages 116-132.
    3. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.
    4. Nguyen, Duy Tan & Adulyasak, Yossiri & Landry, Sylvain, 2021. "Research manuscript: The Bullwhip Effect in rule-based supply chain planning systems–A case-based simulation at a hard goods retailer," Omega, Elsevier, vol. 98(C).
    5. Erkan Bayraktar & Kazim Sari & Ekrem Tatoglu & Selim Zaim & Dursun Delen, 2020. "Assessing the supply chain performance: a causal analysis," Annals of Operations Research, Springer, vol. 287(1), pages 37-60, April.
    6. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    7. Lin, Junyi & Huang, Hongfu & Li, Shanshan & Naim, Mohamed M., 2023. "On the dynamics of order pipeline inventory in a nonlinear order-up-to system," International Journal of Production Economics, Elsevier, vol. 266(C).
    8. Sun, Miao & Chen, Jing & Tian, Ye & Yan, Yufei, 2021. "The impact of online reviews in the presence of customer returns," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Lin, J. & Naim, M.M. & Purvis, L. & Gosling, J., 2017. "The extension and exploitation of the inventory and order based production control system archetype from 1982 to 2015," International Journal of Production Economics, Elsevier, vol. 194(C), pages 135-152.
    10. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    11. Dominguez, Roberto & Cannella, Salvatore & Framinan, Jose M., 2021. "Remanufacturing configuration in complex supply chains," Omega, Elsevier, vol. 101(C).
    12. Cannella, Salvatore & Dominguez, Roberto & Framinan, Jose M., 2017. "Inventory record inaccuracy – The impact of structural complexity and lead time variability," Omega, Elsevier, vol. 68(C), pages 123-138.
    13. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    14. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    15. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    16. Ponte, Borja & Puche, Julio & Rosillo, Rafael & de la Fuente, David, 2020. "The effects of quantity discounts on supply chain performance: Looking through the Bullwhip lens," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    18. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    19. Zhang, Tao & Li, Gang & Cheng, T.C.E. & Lai, Kin Keung, 2017. "Welfare economics of review information: Implications for the online selling platform owner," International Journal of Production Economics, Elsevier, vol. 184(C), pages 69-79.
    20. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.