IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v85y2019icp49-67.html
   My bibliography  Save this article

Identifying non-additive multi-attribute value functions based on uncertain indifference statements

Author

Listed:
  • Haag, Fridolin
  • Lienert, Judit
  • Schuwirth, Nele
  • Reichert, Peter

Abstract

Multi-criteria decision analysis (MCDA) requires an accurate representation of the preferences of decision-makers, for instance in the form of a multi-attribute value function. Typically, additivity or other stringent assumptions about the preferences are made to facilitate elicitation by assuming a simple parametric form. When relaxing such assumptions, parameters cannot be elicited easily with standard methods. We present a novel approach for identifying multi-attribute value functions which can have any shape. As preference information indifference statements are used that can be elicited by trade-off questions. Instead of asking one indifference statement for each pair of attributes, we ask for multiple trade-offs at different points in the attribute space. This allows inferring parameters of complex value functions despite the simplicity of the preference statements. Parameters are estimated by taking into account preference and elicitation uncertainty with a probabilistic model. Statistical inference supports identifying the most adequate preference model out of several candidate models through quantifying the uncertainty and assessing the need for non-additivity. The approach is elaborated for determining value functions by hierarchical aggregation. We apply it to an assessment of the ecological state of rivers, which is used to support environmental management decisions in Switzerland. Preference models of four experts were quantified, confirming the feasibility of the approach and the relevance of considering non-additive functions. The method suggests a promising direction for improving the representation of preferences.

Suggested Citation

  • Haag, Fridolin & Lienert, Judit & Schuwirth, Nele & Reichert, Peter, 2019. "Identifying non-additive multi-attribute value functions based on uncertain indifference statements," Omega, Elsevier, vol. 85(C), pages 49-67.
  • Handle: RePEc:eee:jomega:v:85:y:2019:i:c:p:49-67
    DOI: 10.1016/j.omega.2018.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317308204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James S. Dyer & Rakesh K. Sarin, 1982. "Relative Risk Aversion," Management Science, INFORMS, vol. 28(8), pages 875-886, August.
    2. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    3. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    4. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    5. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    6. de Almeida, Jonatas Araujo & Costa, Ana Paula Cabral Seixas & de Almeida-Filho, Adiel Teixeira, 2016. "A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoffAuthor-Name: de Almeida, Adiel Teixeira," European Journal of Operational Research, Elsevier, vol. 250(1), pages 179-191.
    7. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    8. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    9. Daniel R. Cavagnaro & Richard Gonzalez & Jay I. Myung & Mark A. Pitt, 2013. "Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach," Management Science, INFORMS, vol. 59(2), pages 358-375, February.
    10. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    11. Deparis, Stéphane & Mousseau, Vincent & Öztürk, Meltem & Huron, Caroline, 2015. "The effect of bi-criteria conflict on matching-elicited preferences," European Journal of Operational Research, Elsevier, vol. 242(3), pages 951-959.
    12. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    13. Attema, Arthur E. & Brouwer, Werner B.F., 2013. "In search of a preferred preference elicitation method: A test of the internal consistency of choice and matching tasks," Journal of Economic Psychology, Elsevier, vol. 39(C), pages 126-140.
    14. Figueira, José Rui & Greco, Salvatore & Slowinski, Roman, 2009. "Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method," European Journal of Operational Research, Elsevier, vol. 195(2), pages 460-486, June.
    15. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    16. James S. Dyer & Rakesh K. Sarin, 1979. "Measurable Multiattribute Value Functions," Operations Research, INFORMS, vol. 27(4), pages 810-822, August.
    17. Scholten, Lisa & Schuwirth, Nele & Reichert, Peter & Lienert, Judit, 2015. "Tackling uncertainty in multi-criteria decision analysis – An application to water supply infrastructure planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 243-260.
    18. David A. Hensher, 2006. "How do respondents process stated choice experiments? Attribute consideration under varying information load," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 861-878.
    19. Marttunen, Mika & Belton, Valerie & Lienert, Judit, 2018. "Are objectives hierarchy related biases observed in practice? A meta-analysis of environmental and energy applications of Multi-Criteria Decision Analysis," European Journal of Operational Research, Elsevier, vol. 265(1), pages 178-194.
    20. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2013. "RUTA: A framework for assessing and selecting additive value functions on the basis of rank related requirements," Omega, Elsevier, vol. 41(4), pages 735-751.
    21. Michel Grabisch & Jean-Luc Marichal & Radko Mesiar & Endre Pap, 2009. "Aggregation functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00445120, HAL.
    22. Huber, Joel & Ariely, Dan & Fischer, Gregory, 2002. "Expressing Preferences in a Principal-Agent Task: A Comparison of Choice, Rating, and Matching," Organizational Behavior and Human Decision Processes, Elsevier, vol. 87(1), pages 66-90, January.
    23. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    24. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    25. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    26. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gasparini, Gaia & Brunelli, Matteo & Chiriac, Marius Dan, 2022. "Multi-period portfolio decision analysis: A case study in the infrastructure management sector," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    3. Kuller, M. & Beutler, P. & Lienert, J., 2023. "Preference change in stakeholder group-decision processes in the public sector: Extent, causes and implications," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1268-1285.
    4. Sriwastava, Ambuj & Reichert, Peter, 2023. "Reducing sample size requirements by extending discrete choice experiments to indifference elicitation," Journal of choice modelling, Elsevier, vol. 48(C).
    5. Haag, Fridolin & Chennu, Arjun, 2023. "Assessing whether decisions are more sensitive to preference or prediction uncertainty with a value of information approach," Omega, Elsevier, vol. 121(C).
    6. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    7. Xiaoyang Yao & Enmeng Liu & Xiaolei Sun & Wei Le & Jianping Li, 2024. "Integrating external representations and internal patterns into dynamic multiple-criteria decision making," Annals of Operations Research, Springer, vol. 341(1), pages 149-172, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    2. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    3. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    4. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    5. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    6. Zheng, Jun & Lienert, Judit, 2018. "Stakeholder interviews with two MAVT preference elicitation philosophies in a Swiss water infrastructure decision: Aggregation using SWING-weighting and disaggregation using UTAGMS," European Journal of Operational Research, Elsevier, vol. 267(1), pages 273-287.
    7. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    8. Peter Reichert & Klemens Niederberger & Peter Rey & Urs Helg & Susanne Haertel-Borer, 2019. "The need for unconventional value aggregation techniques: experiences from eliciting stakeholder preferences in environmental management," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 197-219, November.
    9. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    10. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    11. Labreuche, Christophe & Grabisch, Michel, 2018. "Using multiple reference levels in Multi-Criteria Decision aid: The Generalized-Additive Independence model and the Choquet integral approaches," European Journal of Operational Research, Elsevier, vol. 267(2), pages 598-611.
    12. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    13. Salvatore Corrente & José Figueira & Salvatore Greco, 2014. "Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods," Annals of Operations Research, Springer, vol. 217(1), pages 137-164, June.
    14. Zhao Qiaojiao & Zeng Ling & Liu Jinjin, 2016. "Fuzzy Integral Multiple Criteria Decision Making Method Based on Fuzzy Preference Relation on Alternatives," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 280-290, June.
    15. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    16. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    17. Bilbao-Terol, Amelia & Bilbao-Terol, Celia, 2024. "The Choquet integral supported by a hedonic approach for modelling preferences in hotel selection," Omega, Elsevier, vol. 122(C).
    18. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    19. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    20. Christophe Labreuche & Michel Grabisch, 2016. "A comparison of the GAI model and the Choquet integral with respect to a k-ary capacity," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01277825, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:85:y:2019:i:c:p:49-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.