IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v112y2022ics0305048322000780.html
   My bibliography  Save this article

Staff scheduling for residential care under pandemic conditions: The case of COVID-19

Author

Listed:
  • Moosavi, Amirhossein
  • Ozturk, Onur
  • Patrick, Jonathan

Abstract

The COVID-19 pandemic severely impacted residential care delivery all around the world. This study investigates the current scheduling methods in residential care facilities in order to enhance them for pandemic conditions. We first define the basic problem that addresses decisions associated with the assignment and scheduling of staff members, who perform a set of tasks required by residents during a planning horizon. This problem includes the minimization of costs associated with the salary of part-time staff members, total overtime, and violations of service time windows. Subsequently, we adapt the basic problem to pandemic conditions by considering the impacts of communal spaces (e.g., shared rooms) and a cohorting policy (classification of residents based on their risk of infection) on the spread of infectious diseases. We introduce a new objective function that minimizes the number of distinct staff members serving each room of residents. Likewise, we propose a new objective function for the cohorting policy that aims to minimize the number of distinct cohorts served by each staff member. A new constraint is incorporated that forces staff members to serve only one cohort within a shift. We present a population-based heuristic algorithm to solve this problem. Through a comparison with two benchmark solution approaches (a mathematical programme and a non-dominated archiving ant colony optimization algorithm), the superiority of the heuristic algorithm is shown regarding solution quality and CPU time. Finally, we conduct numerical analyses to present managerial implications.

Suggested Citation

  • Moosavi, Amirhossein & Ozturk, Onur & Patrick, Jonathan, 2022. "Staff scheduling for residential care under pandemic conditions: The case of COVID-19," Omega, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000780
    DOI: 10.1016/j.omega.2022.102671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322000780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    2. Isabel Méndez-Fernández & Silvia Lorenzo-Freire & Ignacio García-Jurado & Julián Costa & Luisa Carpente, 2020. "A heuristic approach to the task planning problem in a home care business," Health Care Management Science, Springer, vol. 23(4), pages 556-570, December.
    3. Maenhout, Broos & Vanhoucke, Mario, 2013. "An integrated nurse staffing and scheduling analysis for longer-term nursing staff allocation problems," Omega, Elsevier, vol. 41(2), pages 485-499.
    4. Mosquera, Federico & Smet, Pieter & Vanden Berghe, Greet, 2019. "Flexible home care scheduling," Omega, Elsevier, vol. 83(C), pages 80-95.
    5. Cappanera, Paola & Scutellà, Maria Grazia & Nervi, Federico & Galli, Laura, 2018. "Demand uncertainty in robust Home Care optimization," Omega, Elsevier, vol. 80(C), pages 95-110.
    6. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    7. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    8. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Koeleman, P.M. & Bhulai, S. & van Meersbergen, M., 2012. "Optimal patient and personnel scheduling policies for care-at-home service facilities," European Journal of Operational Research, Elsevier, vol. 219(3), pages 557-563.
    11. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansini, Renata & Zanella, Marina & Zanotti, Roberto, 2023. "Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff," Omega, Elsevier, vol. 114(C).
    2. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).
    3. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    3. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    4. Goel, Asvin & Meisel, Frank, 2013. "Workforce routing and scheduling for electricity network maintenance with downtime minimization," European Journal of Operational Research, Elsevier, vol. 231(1), pages 210-228.
    5. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    6. Makboul, Salma & Kharraja, Said & Abbassi, Abderrahman & El Hilali Alaoui, Ahmed, 2024. "A multiobjective approach for weekly Green Home Health Care routing and scheduling problem with care continuity and synchronized services," Operations Research Perspectives, Elsevier, vol. 12(C).
    7. Esmaeil Akhondi-Bajegani & F. Jolai & S. Ali Torabi, 2024. "A new mathematical model for designing and improving the performance of a home health care logistics network," Annals of Operations Research, Springer, vol. 340(2), pages 1189-1220, September.
    8. Nasir, Jamal Abdul & Kuo, Yong-Hong, 2024. "Stochastic home care transportation with dynamically prioritized patients: An integrated facility location, fleet sizing, and routing approach," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    9. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    10. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    11. R. K. Jha & B. S. Sahay & P. Charan, 2016. "Healthcare operations management: a structured literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 259-279, September.
    12. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    13. Tohidi, Mohammad & Kazemi Zanjani, Masoumeh & Contreras, Ivan, 2021. "A physician planning framework for polyclinics under uncertainty," Omega, Elsevier, vol. 101(C).
    14. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    15. Jose Pedro Garcia-Sabater & Julien Maheut & Angel Ruiz & Julio Juan Garcia-Sabater, 2020. "A Framework for Capacity and Operations Planning in Services Organizations Employing Workers with Intellectual Disabilities," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    16. Volland, Jonas & Fügener, Andreas & Brunner, Jens O., 2017. "A column generation approach for the integrated shift and task scheduling problem of logistics assistants in hospitals," European Journal of Operational Research, Elsevier, vol. 260(1), pages 316-334.
    17. He, Fang & Chaussalet, Thierry & Qu, Rong, 2019. "Controlling understaffing with conditional Value-at-Risk constraint for an integrated nurse scheduling problem under patient demand uncertainty," Operations Research Perspectives, Elsevier, vol. 6(C).
    18. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    19. Restrepo, María I. & Rousseau, Louis-Martin & Vallée, Jonathan, 2020. "Home healthcare integrated staffing and scheduling," Omega, Elsevier, vol. 95(C).
    20. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:112:y:2022:i:c:s0305048322000780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.