IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i1p295-303.html
   My bibliography  Save this article

A set partitioning heuristic for the home health care routing and scheduling problem

Author

Listed:
  • Grenouilleau, Florian
  • Legrain, Antoine
  • Lahrichi, Nadia
  • Rousseau, Louis-Martin

Abstract

The home health care routing and scheduling problem comprises the assignment and routing of a set of home care visits over the duration of a week. These services allow patients to remain in their own homes, thereby reducing governmental costs by decentralizing the care. In this work, we present a set partitioning heuristic which takes into account most of the industry’s practical constraints. The developed method is based on a set partitioning formulation and a large neighborhood search (LNS) framework. The algorithm solves a linear relaxation of a set partitioning model using the columns generated by the large neighborhood search. A constructive heuristic is then called to build an integer solution. This project is joint work with Alayacare, a start-up sited in Montral (Canada) developing an operations management platform for home health care agencies. They provide their clients with a flexible optimization module that solves real-life instances in no more than 10 minutes. Based on their real instances, the proposed method is able to provide a reduction in travel time by 37% and an increase by more than 16% in continuity of care. We also provide a public benchmark for this problem.

Suggested Citation

  • Grenouilleau, Florian & Legrain, Antoine & Lahrichi, Nadia & Rousseau, Louis-Martin, 2019. "A set partitioning heuristic for the home health care routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 295-303.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:295-303
    DOI: 10.1016/j.ejor.2018.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718309500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maya Duque, P.A. & Castro, M. & Sörensen, K. & Goos, P., 2015. "Home care service planning. The case of Landelijke Thuiszorg," European Journal of Operational Research, Elsevier, vol. 243(1), pages 292-301.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Klaus-Dieter Rest & Patrick Hirsch, 2016. "Daily scheduling of home health care services using time-dependent public transport," Flexible Services and Manufacturing Journal, Springer, vol. 28(3), pages 495-525, September.
    4. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    5. Semih Yalçindag & Paola Cappanera & Maria Grazia Scutellà & Evren Sahin & Andrea Matta, 2016. "Pattern-based decompositions for human resource planning in home health care services," Post-Print hal-01736734, HAL.
    6. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    7. M. Gamst & T. Sejr Jensen, 2012. "A branch-and-price algorithm for the long-term home care scheduling problem," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 483-488, Springer.
    8. Sachidanand V. Begur & David M. Miller & Jerry R. Weaver, 1997. "An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses," Interfaces, INFORMS, vol. 27(4), pages 35-48, August.
    9. Gerhard Hiermann & Matthias Prandtstetter & Andrea Rendl & Jakob Puchinger & Günther Raidl, 2015. "Metaheuristics for solving a multimodal home-healthcare scheduling problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 89-113, March.
    10. Nickel, Stefan & Schröder, Michael & Steeg, Jörg, 2012. "Mid-term and short-term planning support for home health care services," European Journal of Operational Research, Elsevier, vol. 219(3), pages 574-587.
    11. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    12. Rosing, K. E. & ReVelle, C. S., 1997. "Heuristic concentration: Two stage solution construction," European Journal of Operational Research, Elsevier, vol. 97(1), pages 75-86, February.
    13. Jorge E. Mendoza & Louis-Martin Rousseau & Juan G. Villegas, 2016. "A hybrid metaheuristic for the vehicle routing problem with stochastic demand and duration constraints," Journal of Heuristics, Springer, vol. 22(4), pages 539-566, August.
    14. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delaet, Arne & Ramaekers, Katrien & Hirsch, Patrick & Molenbruch, Yves & Braekers, Kris, 2024. "A matheuristic for integrated medium-term home healthcare planning," European Journal of Operational Research, Elsevier, vol. 319(2), pages 543-556.
    2. Makboul, Salma & Kharraja, Said & Abbassi, Abderrahman & El Hilali Alaoui, Ahmed, 2024. "A multiobjective approach for weekly Green Home Health Care routing and scheduling problem with care continuity and synchronized services," Operations Research Perspectives, Elsevier, vol. 12(C).
    3. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    6. Esmaeil Akhondi-Bajegani & F. Jolai & S. Ali Torabi, 2024. "A new mathematical model for designing and improving the performance of a home health care logistics network," Annals of Operations Research, Springer, vol. 340(2), pages 1189-1220, September.
    7. Tan Yu & Yongpei Guan & Xiang Zhong, 2024. "Visiting nurses assignment and routing for decentralized telehealth service networks," Annals of Operations Research, Springer, vol. 341(2), pages 1191-1221, October.
    8. Zheng, Chenyang & Wang, Shuming & Li, Ningxin & Wu, Yuanhao, 2021. "Stochastic joint homecare service and capacity planning with nested decomposition approaches," European Journal of Operational Research, Elsevier, vol. 295(1), pages 203-222.
    9. Yadav, Niteesh & Tanksale, Ajinkya, 2022. "An integrated routing and scheduling problem for home healthcare delivery with limited person-to-person contact," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1100-1125.
    10. Nasir, Jamal Abdul & Kuo, Yong-Hong, 2024. "Stochastic home care transportation with dynamically prioritized patients: An integrated facility location, fleet sizing, and routing approach," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    11. Nikzad, Erfaneh & Bashiri, Mahdi & Abbasi, Babak, 2021. "A matheuristic algorithm for stochastic home health care planning," European Journal of Operational Research, Elsevier, vol. 288(3), pages 753-774.
    12. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    13. Vahid Akbari & İhsan Sadati & F. Sibel Salman & Davood Shiri, 2023. "Minimizing total weighted latency in home healthcare routing and scheduling with patient prioritization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 807-852, September.
    14. Guo, Jia & Bard, Jonathan F., 2023. "A three-step optimization-based algorithm for home healthcare delivery," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    15. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François, 2019. "Profit-oriented fixed-charge network design with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 1-19.
    16. Sinem Kınay Savaşer & Bahar Yetis Kara, 2022. "Mobile healthcare services in rural areas: an application with periodic location routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 875-910, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    3. Nasir, Jamal Abdul & Kuo, Yong-Hong, 2024. "Stochastic home care transportation with dynamically prioritized patients: An integrated facility location, fleet sizing, and routing approach," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    4. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    5. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    6. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    7. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    8. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    9. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    10. Delaet, Arne & Ramaekers, Katrien & Hirsch, Patrick & Molenbruch, Yves & Braekers, Kris, 2024. "A matheuristic for integrated medium-term home healthcare planning," European Journal of Operational Research, Elsevier, vol. 319(2), pages 543-556.
    11. Yadav, Niteesh & Tanksale, Ajinkya, 2022. "An integrated routing and scheduling problem for home healthcare delivery with limited person-to-person contact," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1100-1125.
    12. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    13. Makboul, Salma & Kharraja, Said & Abbassi, Abderrahman & El Hilali Alaoui, Ahmed, 2024. "A multiobjective approach for weekly Green Home Health Care routing and scheduling problem with care continuity and synchronized services," Operations Research Perspectives, Elsevier, vol. 12(C).
    14. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    15. Neda Tanoumand & Tonguç Ünlüyurt, 2021. "An exact algorithm for the resource constrained home health care vehicle routing problem," Annals of Operations Research, Springer, vol. 304(1), pages 397-425, September.
    16. Gang Du & Luyao Zheng & Xiaoling Ouyang, 2019. "Real-time scheduling optimization considering the unexpected events in home health care," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 196-220, January.
    17. Mohammed Bazirha & Abdeslam Kadrani & Rachid Benmansour, 2023. "Stochastic home health care routing and scheduling problem with multiple synchronized services," Annals of Operations Research, Springer, vol. 320(2), pages 573-601, January.
    18. Amir M. Fathollahi-Fard & Abbas Ahmadi & Behrooz Karimi, 2021. "Multi-Objective Optimization of Home Healthcare with Working-Time Balancing and Care Continuity," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    19. Jiao Zhao & Tao Wang & Thibaud Monteiro, 2024. "A Bi-Objective Home Health Care Routing and Scheduling Problem under Uncertainty," IJERPH, MDPI, vol. 21(3), pages 1-27, March.
    20. Isabel Méndez-Fernández & Silvia Lorenzo-Freire & Ignacio García-Jurado & Julián Costa & Luisa Carpente, 2020. "A heuristic approach to the task planning problem in a home care business," Health Care Management Science, Springer, vol. 23(4), pages 556-570, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:295-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.