IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v73y2017icp79-92.html
   My bibliography  Save this article

A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem

Author

Listed:
  • Karasakal, Esra
  • Aker, Pınar

Abstract

In this paper, multiple criteria sorting methods based on data envelopment analysis (DEA) are developed to evaluate research and development (R&D) projects. The weight intervals of the criteria are obtained from Interval Analytic Hierarchy Process and employed as the assurance region constraints of models. Based on data envelopment analysis, two threshold estimation models, and five assignment models are developed for sorting. In addition to sorting, these models also provide ranking of the projects. The developed approach and the well-known sorting method UTADIS are applied to a real case study to analyze the R&D projects proposed to a grant program executed by a government funding agency in 2009. A five level R&D project selection criteria hierarchy and an assisting point allocation guide are defined to measure and quantify the performance of the projects. In the case study, the developed methods are observed to be more stable than UTADIS.

Suggested Citation

  • Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
  • Handle: RePEc:eee:jomega:v:73:y:2017:i:c:p:79-92
    DOI: 10.1016/j.omega.2016.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048316309550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2016.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki, 1999. "DEA-discriminant analysis in the view of goal programming," European Journal of Operational Research, Elsevier, vol. 115(3), pages 564-582, June.
    2. An, Qingxian & Yan, Hong & Wu, Jie & Liang, Liang, 2016. "Internal resource waste and centralization degree in two-stage systems: An efficiency analysis," Omega, Elsevier, vol. 61(C), pages 89-99.
    3. Conde, Eduardo & de la Paz Rivera Pérez, María, 2010. "A linear optimization problem to derive relative weights using an interval judgement matrix," European Journal of Operational Research, Elsevier, vol. 201(2), pages 537-544, March.
    4. Ramanathan, Ramakrishnan & Ramanathan, Usha, 2010. "A qualitative perspective to deriving weights from pairwise comparison matrices," Omega, Elsevier, vol. 38(3-4), pages 228-232, June.
    5. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, October.
    6. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    7. D Bouyssou, 1999. "Using DEA as a tool for MCDM: some remarks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 974-978, September.
    8. Johnson, Sharon A. & Zhu, Joe, 2003. "Identifying "best" applicants in recruiting using data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 125-139, June.
    9. Murat Köksalan & Ceren Tuncer, 2009. "A Dea-Based Approach To Ranking Multi-Criteria Alternatives," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 29-54.
    10. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    11. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    12. Ulucan, AydIn & BarIs AtIcI, KazIm, 2010. "Efficiency evaluations with context-dependent and measure-specific data envelopment approaches: An application in a World Bank supported project," Omega, Elsevier, vol. 38(1-2), pages 68-83, February.
    13. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    14. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    15. Sueyoshi, Toshiyuki, 2006. "DEA-Discriminant Analysis: Methodological comparison among eight discriminant analysis approaches," European Journal of Operational Research, Elsevier, vol. 169(1), pages 247-272, February.
    16. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    17. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    18. Huang, Chi-Cheng & Chu, Pin-Yu & Chiang, Yu-Hsiu, 2008. "A fuzzy AHP application in government-sponsored R&D project selection," Omega, Elsevier, vol. 36(6), pages 1038-1052, December.
    19. M.D. Troutt, 1997. "Derivation of the Maximin Efficiency Ratio model from the maximum decisional efficiency principle," Annals of Operations Research, Springer, vol. 73(0), pages 323-338, October.
    20. Madlener, Reinhard & Antunes, Carlos Henggeler & Dias, Luis C., 2009. "Assessing the performance of biogas plants with multi-criteria and data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1084-1094, September.
    21. Jie Wu & Junfei Chu & Qingyuan Zhu & Pengzhen Yin & Liang Liang, 2016. "DEA cross-efficiency evaluation based on satisfaction degree: an application to technology selection," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 5990-6007, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selin Özpeynirci & Özgür Özpeynirci & Vincent Mousseau, 2021. "An interactive algorithm for resource allocation with balance concerns," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 983-1005, December.
    2. Da Huo & Jingtao Yi & Xiaotao Zhang & Shuang Meng & Yongchuan Chen & Rihui Ouyang & Ken Hung, 2023. "FDI and Wellbeing: A Key Node Analysis for Psychological Health in Response to COVID-19 Using Artificial Intelligence," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    3. Quezada, Luis E. & López-Ospina, Héctor A. & Ortiz, César & Oddershede, Astrid M. & Palominos, Pedro I. & Jofré, Paulina A., 2022. "A DEMATEL-based method for prioritizing strategic projects using the perspectives of the Balanced Scorecard," International Journal of Production Economics, Elsevier, vol. 249(C).
    4. Unutmaz Durmuşoğlu, Zeynep Didem, 2018. "Assessment of techno-entrepreneurship projects by using Analytical Hierarchy Process (AHP)," Technology in Society, Elsevier, vol. 54(C), pages 41-46.
    5. An, Qingxian & Wen, Yao & Ding, Tao & Li, Yongli, 2019. "Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method," Omega, Elsevier, vol. 85(C), pages 16-25.
    6. Ciprian Cristea & Maria Cristea, 2021. "KPIs for Operational Performance Assessment in Flexible Packaging Industry," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    7. Wang, Liang & Zhang, Zi-Xin & Ishizaka, Alessio & Wang, Ying-Ming & Martínez, Luis, 2023. "TODIMSort: A TODIM based method for sorting problems," Omega, Elsevier, vol. 115(C).
    8. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    9. Dalton Garcia Borges de Souza & Erivelton Antonio dos Santos & Nei Yoshihiro Soma & Carlos Eduardo Sanches da Silva, 2021. "MCDM-Based R&D Project Selection: A Systematic Literature Review," Sustainability, MDPI, vol. 13(21), pages 1-34, October.
    10. Galimkair Mutanov & Sayabek Ziyadin & Aijaz Shaikh, 2019. "Graphic model for evaluating the competitiveness and eco-efficiency of eco-innovative projects," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 2136-2158, June.
    11. Elhorst, Paul & Faems, Dries, 2021. "Evaluating proposals in innovation contests: Exploring negative scoring spillovers in the absence of a strict evaluation sequence," Research Policy, Elsevier, vol. 50(4).
    12. Hongbo Li & Bowen Yao & Xin Yan, 2021. "Data-Driven Public R&D Project Performance Evaluation: Results from China," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    13. Wenfeng Zhu & Hengjie Zhang & Jing Xiao, 2023. "Coming to Consensus on Classification in Flexible Linguistic Preference Relations: The Role of Personalized Individual Semantics," Group Decision and Negotiation, Springer, vol. 32(5), pages 1237-1271, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madjid Tavana & Mehdi Soltanifar & Francisco J. Santos-Arteaga, 2023. "Analytical hierarchy process: revolution and evolution," Annals of Operations Research, Springer, vol. 326(2), pages 879-907, July.
    2. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
    3. Gouveia, M.C. & Dias, L.C. & Antunes, C.H. & Boucinha, J. & Inácio, C.F., 2015. "Benchmarking of maintenance and outage repair in an electricity distribution company using the value-based DEA method," Omega, Elsevier, vol. 53(C), pages 104-114.
    4. Maryam Bagherikahvarin & Yves Smet, 2017. "Determining new possible weight values in PROMETHEE: a procedure based on data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 484-495, May.
    5. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    6. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    7. Alexandr Gedranovich & Mykhaylo Salnykov, 2012. "Productivity analysis of Belarusian higher education system," BEROC Working Paper Series 16, Belarusian Economic Research and Outreach Center (BEROC).
    8. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    9. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    10. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.
    11. Kong, Wei-Hsin & Fu, Tsu-Tan, 2012. "Assessing the performance of business colleges in Taiwan using data envelopment analysis and student based value-added performance indicators," Omega, Elsevier, vol. 40(5), pages 541-549.
    12. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    13. Sharon Hadad & Yossi Hadad & Tzahit Simon-Tuval, 2013. "Determinants of healthcare system’s efficiency in OECD countries," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 253-265, April.
    14. Obata, Tsuneshi & Ishii, Hiroaki, 2003. "A method for discriminating efficient candidates with ranked voting data," European Journal of Operational Research, Elsevier, vol. 151(1), pages 233-237, November.
    15. Barros, Carlos Pestana & Wanke, Peter, 2015. "An analysis of African airlines efficiency with two-stage TOPSIS and neural networks," Journal of Air Transport Management, Elsevier, vol. 44, pages 90-102.
    16. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.
    17. Salvatore Greco & Alessio Ishizaka & Menelaos Tasiou & Gianpiero Torrisi, 2019. "On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 61-94, January.
    18. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    19. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    20. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:73:y:2017:i:c:p:79-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.