IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v95y2024ics0038012124002532.html
   My bibliography  Save this article

An innovative patient clustering method using data envelopment Analysis–Discriminant analysis and artificial neural networks: A case study in healthcare systems

Author

Listed:
  • Yousefi, Saeed
  • Saen, Reza Farzipoor
  • Shabanpour, Hadi
  • Ghods, Kian

Abstract

A major lesson healthcare managers learned from the COVID-19 outbreak is the need for more effective patient classification and medical resource allocation for future pandemics. In their view, hospitalization mortality could be greatly reduced if more effective systems for patient classification were in place before the outbreak to evaluate and assign treatment facilities. This study presents a scalable patient clustering approach using a Self-Organizing Map (SOM) of the Artificial Neural Network (ANN) to cluster patients for appropriate treatment allocation. The patients’ membership is forecasted using Data Envelopment Analysis–Discriminant Analysis (DEA-DA). The objectives of this research are to develop a flexible framework that healthcare systems can adopt to cluster patients based on specific testing criteria from medical records and to assign them to suitable medical centers with appropriate treatment resources. This method aims to enhance healthcare system efficiency by ensuring patients with severe illnesses receive care at well-equipped centers, while those with milder symptoms are directed to other suitable facilities. The approach is scalable and adaptable to any type of widespread illness and aims to increase recovery rates and decrease mortality rates, as confirmed by the case study results.

Suggested Citation

  • Yousefi, Saeed & Saen, Reza Farzipoor & Shabanpour, Hadi & Ghods, Kian, 2024. "An innovative patient clustering method using data envelopment Analysis–Discriminant analysis and artificial neural networks: A case study in healthcare systems," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002532
    DOI: 10.1016/j.seps.2024.102054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124002532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.102054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sueyoshi, Toshiyuki, 2001. "Extended DEA-Discriminant Analysis," European Journal of Operational Research, Elsevier, vol. 131(2), pages 324-351, June.
    2. Ferreira, Diogo Cunha & Nunes, Alexandre Morais & Marques, Rui Cunha, 2018. "Doctors, nurses, and the optimal scale size in the Portuguese public hospitals," Health Policy, Elsevier, vol. 122(10), pages 1093-1100.
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Azadi, Majid & Yousefi, Saeed & Farzipoor Saen, Reza & Shabanpour, Hadi & Jabeen, Fauzia, 2023. "Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis," Journal of Business Research, Elsevier, vol. 154(C).
    7. Andrea Brambilla & Tian-zhi Sun & Waleed Elshazly & Ahmed Ghazy & Paul Barach & Göran Lindahl & Stefano Capolongo, 2021. "Flexibility during the COVID-19 Pandemic Response: Healthcare Facility Assessment Tools for Resilient Evaluation," IJERPH, MDPI, vol. 18(21), pages 1-20, October.
    8. Sueyoshi, Toshiyuki, 1999. "DEA-discriminant analysis in the view of goal programming," European Journal of Operational Research, Elsevier, vol. 115(3), pages 564-582, June.
    9. Diogo Ferreira & Rui Cunha Marques, 2018. "Identifying congestion levels, sources and determinants on intensive care units: the Portuguese case," Health Care Management Science, Springer, vol. 21(3), pages 348-375, September.
    10. Hakan Yildiz & Srinivas Talluri & Xiulin Xie & Jiho Yoon & Peihua Qiu & John M. Wassick, 2022. "Evaluating and monitoring distribution network efficiency with multivariate process control methods," International Journal of Production Research, Taylor & Francis Journals, vol. 60(2), pages 517-533, January.
    11. Misiunas, Nicholas & Oztekin, Asil & Chen, Yao & Chandra, Kavitha, 2016. "DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status," Omega, Elsevier, vol. 58(C), pages 46-54.
    12. Marianela Carrillo & Jesús M. Jorge, 2017. "DEA-Like Efficiency Ranking of Regional Health Systems in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1133-1149, September.
    13. Mohammed Atris, Amani, 2020. "Assessment of oil refinery performance: Application of data envelopment analysis-discriminant analysis," Resources Policy, Elsevier, vol. 65(C).
    14. Sueyoshi, Toshiyuki, 2004. "Mixed integer programming approach of extended DEA-discriminant analysis," European Journal of Operational Research, Elsevier, vol. 152(1), pages 45-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    2. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "Methodological comparison between DEA (data envelopment analysis) and DEA-DA (discriminant analysis) from the perspective of bankruptcy assessment," European Journal of Operational Research, Elsevier, vol. 199(2), pages 561-575, December.
    4. Hung-Tso Lin & Tsung-Yu Chou & Yen-Ting Chen & Yin-Chi Huang, 2014. "Profitability analysis using IDEA–DA framework," Annals of Operations Research, Springer, vol. 223(1), pages 291-308, December.
    5. K F Lam, 2010. "In the determination of weight sets to compute cross-efficiency ratios in DEA," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 134-143, January.
    6. Sebastian Kohl & Jan Schoenfelder & Andreas Fügener & Jens O. Brunner, 2019. "The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals," Health Care Management Science, Springer, vol. 22(2), pages 245-286, June.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    8. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    9. Roslah Arsad & Zaidi Isa, 2024. "Evaluating Company Efficiency in Malaysian Stock Markets: Insights from DEA and Super Efficiency Models," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 4707-4718, August.
    10. Wang, Derek & Li, Shanling & Sueyoshi, Toshiyuki, 2014. "DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability," Energy Economics, Elsevier, vol. 45(C), pages 254-267.
    11. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    12. Soulef Smaoui & Belaid Aouni, 2017. "Fuzzy goal programming model for classification problems," Annals of Operations Research, Springer, vol. 251(1), pages 141-160, April.
    13. Mustapha D. Ibrahim & Sahand Daneshvar & Mevhibe B. Hocaoğlu & Olasehinde-Williams G. Oluseye, 2019. "An Estimation of the Efficiency and Productivity of Healthcare Systems in Sub-Saharan Africa: Health-Centred Millennium Development Goal-Based Evidence," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(1), pages 371-389, May.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    15. Yang, Chyan & Liu, Hsian-Ming, 2012. "Managerial efficiency in Taiwan bank branches: A network DEA," Economic Modelling, Elsevier, vol. 29(2), pages 450-461.
    16. Sueyoshi, Toshiyuki & Goto, Mika, 2009. "DEA-DA for bankruptcy-based performance assessment: Misclassification analysis of Japanese construction industry," European Journal of Operational Research, Elsevier, vol. 199(2), pages 576-594, December.
    17. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    18. Sabri Boubaker & T.D.Q. Le & T. Ngo & R. Manita, 2023. "Predicting the Performance of MSMEs: A Hybrid DEA-machine Learning Approach," Post-Print hal-04434027, HAL.
    19. Karasakal, Esra & Aker, Pınar, 2017. "A multicriteria sorting approach based on data envelopment analysis for R&D project selection problem," Omega, Elsevier, vol. 73(C), pages 79-92.
    20. Sharon Hadad & Yossi Hadad & Tzahit Simon-Tuval, 2013. "Determinants of healthcare system’s efficiency in OECD countries," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 253-265, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:95:y:2024:i:c:s0038012124002532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.