IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v222y2014i1p551-56910.1007-s10479-013-1447-8.html
   My bibliography  Save this article

Preprocessing for a map sectorization problem by means of mathematical programming

Author

Listed:
  • Xin Tang
  • Ameur Soukhal
  • Vincent T’kindt

Abstract

The sectorization problem is a particular case of partitioning problems occurring in cartography. The aim is to partition a territory into sectors such that the statistical activity measure of each sector is as close as possible to a given target value. We model this as a problem of minimizing the maximum deviation among all the sectors between their activity measure and their target value. We propose a mathematical programming formulation for the problem, we add some valid inequalities to restrict the solution space and develop a preprocessing procedure to reduce the number of variables. Computational results on different maps highlight the strong efficiency of this reduction procedure. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
  • Handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:551-569:10.1007/s10479-013-1447-8
    DOI: 10.1007/s10479-013-1447-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1447-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1447-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    2. María Osorio & Fred Glover & Peter Hammer, 2002. "Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions," Annals of Operations Research, Springer, vol. 117(1), pages 71-93, November.
    3. Jörg Kalcsics & Stefan Nickel & Justo Puerto & Antonio Rodríguez-Chía, 2010. "The ordered capacitated facility location problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 203-222, July.
    4. Tony J. Van Roy, 1986. "A Cross Decomposition Algorithm for Capacitated Facility Location," Operations Research, INFORMS, vol. 34(1), pages 145-163, February.
    5. Anuj Mehrotra & Ellis L. Johnson & George L. Nemhauser, 1998. "An Optimization Based Heuristic for Political Districting," Management Science, INFORMS, vol. 44(8), pages 1100-1114, August.
    6. Vincent T’kindt & Federico Della Croce & Jean-Louis Bouquard, 2007. "Enumeration of Pareto Optima for a Flowshop Scheduling Problem with Two Criteria," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 64-72, February.
    7. S. W. Hess & J. B. Weaver & H. J. Siegfeldt & J. N. Whelan & P. A. Zitlau, 1965. "Nonpartisan Political Redistricting by Computer," Operations Research, INFORMS, vol. 13(6), pages 998-1006, December.
    8. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    9. Michael B. Teitz & Polly Bart, 1968. "Heuristic Methods for Estimating the Generalized Vertex Median of a Weighted Graph," Operations Research, INFORMS, vol. 16(5), pages 955-961, October.
    10. GARFINKEL, Robert S. & NEMHAUSER, Geroge L., 1970. "Optimal political districting by implicit enumeration techniques," LIDAM Reprints CORE 54, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. R. S. Garfinkel & G. L. Nemhauser, 1970. "Optimal Political Districting by Implicit Enumeration Techniques," Management Science, INFORMS, vol. 16(8), pages 495-508, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    2. Gawiejnowicz, Stanisław & Kurc, Wiesław, 2015. "Structural properties of time-dependent scheduling problems with the lp norm objective," Omega, Elsevier, vol. 57(PB), pages 196-202.
    3. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
    4. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oded Berman & Zvi Drezner & Arie Tamir & George Wesolowsky, 2009. "Optimal location with equitable loads," Annals of Operations Research, Springer, vol. 167(1), pages 307-325, March.
    2. Swamy, Rahul & King, Douglas M. & Ludden, Ian G. & Dobbs, Kiera W. & Jacobson, Sheldon H., 2024. "A practical optimization framework for political redistricting: A case study in Arizona," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    3. Balázs Fleiner & Balázs Nagy & Attila Tasnádi, 2017. "Optimal partisan districting on planar geographies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 879-888, December.
    4. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    5. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    6. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    7. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.
    8. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    9. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    10. Fernando Tavares-Pereira & José Figueira & Vincent Mousseau & Bernard Roy, 2007. "Multiple criteria districting problems," Annals of Operations Research, Springer, vol. 154(1), pages 69-92, October.
    11. Ram Gopalan & Steven O. Kimbrough & Frederic H. Murphy & Nicholas Quintus, 2013. "The Philadelphia Districting Contest: Designing Territories for City Council Based Upon the 2010 Census," Interfaces, INFORMS, vol. 43(5), pages 477-489, October.
    12. M Blais & S D Lapierre & G Laporte, 2003. "Solving a home-care districting problem in an urban setting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(11), pages 1141-1147, November.
    13. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    14. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    15. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    16. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    17. Flavia Bonomo & Diego Delle Donne & Guillermo Durán & Javier Marenco, 2013. "Automatic Dwelling Segmentation of the Buenos Aires Province for the 2010 Argentinian Census," Interfaces, INFORMS, vol. 43(4), pages 373-384, August.
    18. Han, Jialin & Hu, Yaoguang & Mao, Mingsong & Wan, Shuping, 2020. "A multi-objective districting problem applied to agricultural machinery maintenance service network," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1120-1130.
    19. Maria da Conceição Rego & Rui Fragoso & Vladimir Bushenkov, 2014. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," ERSA conference papers ersa14p218, European Regional Science Association.
    20. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:551-569:10.1007/s10479-013-1447-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.