IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v141y2013i1p79-86.html
   My bibliography  Save this article

Two-machine flowshop scheduling with a truncated learning function to minimize the makespan

Author

Listed:
  • Cheng, T.C.E.
  • Wu, Chin-Chia
  • Chen, Juei-Chao
  • Wu, Wen-Hsiang
  • Cheng, Shuenn-Ren

Abstract

Scheduling with learning effects has continued to attract the attention of scheduling researchers. However, the majority of the research on this topic has been focused on the single-machine setting. Moreover, under the commonly adopted learning model in scheduling, the actual processing time of a job drops to zero precipitously as the number of jobs increases, which is at odds with reality. To address these issues, we study a two-machine flowshop scheduling problem with a truncated learning function in which the actual processing time of a job is a function of the job's position in a schedule and the learning truncation parameter. The objective is to minimize the makespan. We propose a branch-and-bound and three crossover-based genetic algorithms (GAs) to find the optimal and approximate solutions, respectively, for the problem. We perform extensive computational experiments to evaluate the performance of all the proposed algorithms under different experimental conditions. The results show that the GAs perform quite well in terms of both efficiency and solution quality.

Suggested Citation

  • Cheng, T.C.E. & Wu, Chin-Chia & Chen, Juei-Chao & Wu, Wen-Hsiang & Cheng, Shuenn-Ren, 2013. "Two-machine flowshop scheduling with a truncated learning function to minimize the makespan," International Journal of Production Economics, Elsevier, vol. 141(1), pages 79-86.
  • Handle: RePEc:eee:proeco:v:141:y:2013:i:1:p:79-86
    DOI: 10.1016/j.ijpe.2012.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312001351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Wen-Chiung & Wu, Chin-Chia, 2004. "Minimizing total completion time in a two-machine flowshop with a learning effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 85-93, March.
    2. Wu, Chin-Chia & Lee, Wen-Chiung, 2009. "A note on the total completion time problem in a permutation flowshop with a learning effect," European Journal of Operational Research, Elsevier, vol. 192(1), pages 343-347, January.
    3. Cheng, T. C. E. & Ding, Q. & Lin, B. M. T., 2004. "A concise survey of scheduling with time-dependent processing times," European Journal of Operational Research, Elsevier, vol. 152(1), pages 1-13, January.
    4. B Alidaee & N K Womer, 1999. "Scheduling with time dependent processing times: Review and extensions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 711-720, July.
    5. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    6. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    7. A Bachman & A Janiak, 2004. "Scheduling jobs with position-dependent processing times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(3), pages 257-264, March.
    8. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    9. Tseng, Lin-Yu & Lin, Ya-Tai, 2010. "A genetic local search algorithm for minimizing total flowtime in the permutation flowshop scheduling problem," International Journal of Production Economics, Elsevier, vol. 127(1), pages 121-128, September.
    10. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    11. Moin, N.H. & Salhi, S. & Aziz, N.A.B., 2011. "An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem," International Journal of Production Economics, Elsevier, vol. 133(1), pages 334-343, September.
    12. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    13. T.C. Cheng & Guoqing Wang, 2000. "Single Machine Scheduling with Learning Effect Considerations," Annals of Operations Research, Springer, vol. 98(1), pages 273-290, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yu-Bin & Wan, Long & Wang, Xiao-Yuan, 2015. "Study on due-window assignment scheduling based on common flow allowance," International Journal of Production Economics, Elsevier, vol. 165(C), pages 155-157.
    2. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    3. Cheng, Shuenn-Ren, 2014. "Some new problems on two-agent scheduling to minimize the earliness costs," International Journal of Production Economics, Elsevier, vol. 156(C), pages 24-30.
    4. Ji-Bo Wang & Bo Cui & Ping Ji & Wei-Wei Liu, 2021. "Research on single-machine scheduling with position-dependent weights and past-sequence-dependent delivery times," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 290-303, February.
    5. Wenjuan Fan & Jun Pei & Xinbao Liu & Panos M. Pardalos & Min Kong, 2018. "Serial-batching group scheduling with release times and the combined effects of deterioration and truncated job-dependent learning," Journal of Global Optimization, Springer, vol. 71(1), pages 147-163, May.
    6. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    7. Xinyu Sun & Xin-Na Geng & Tao Liu, 2020. "Due-window assignment scheduling in the proportionate flow shop setting," Annals of Operations Research, Springer, vol. 292(1), pages 113-131, September.
    8. Zhongyi Jiang & Fangfang Chen & Xiandong Zhang, 2022. "Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 116-139, January.
    9. Hongyu He & Mengqi Liu & Ji-Bo Wang, 2017. "Resource constrained scheduling with general truncated job-dependent learning effect," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 626-644, February.
    10. Cheng, Bayi & Zhu, Huijun & Li, Kai & Li, Yongjun, 2019. "Optimization of batch operations with a truncated batch-position-based learning effect," Omega, Elsevier, vol. 85(C), pages 134-143.
    11. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    12. Jin Qian & Yu Zhan, 2021. "The Due Date Assignment Scheduling Problem with Delivery Times and Truncated Sum-of-Processing-Times-Based Learning Effect," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    13. Baoyu Liao & Xingming Wang & Xing Zhu & Shanlin Yang & Panos M. Pardalos, 2020. "Less is more approach for competing groups scheduling with different learning effects," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 33-54, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Wen-Chiung & Chung, Yu-Hsiang, 2013. "Permutation flowshop scheduling to minimize the total tardiness with learning effects," International Journal of Production Economics, Elsevier, vol. 141(1), pages 327-334.
    2. Radosław Rudek, 2012. "Scheduling problems with position dependent job processing times: computational complexity results," Annals of Operations Research, Springer, vol. 196(1), pages 491-516, July.
    3. Yang, Suh-Jenq & Yang, Dar-Li, 2010. "Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities," Omega, Elsevier, vol. 38(6), pages 528-533, December.
    4. Dar-Li Yang & Wen-Hung Kuo, 2009. "Single-machine scheduling with both deterioration and learning effects," Annals of Operations Research, Springer, vol. 172(1), pages 315-327, November.
    5. Lee, Wen-Chiung & Wu, Chin-Chia & Hsu, Peng-Hsiang, 2010. "A single-machine learning effect scheduling problem with release times," Omega, Elsevier, vol. 38(1-2), pages 3-11, February.
    6. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    7. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.
    8. Kai-biao Sun & Hong-xing Li, 2009. "Some single-machine scheduling problems with actual time and position dependent learning effects," Fuzzy Information and Engineering, Springer, vol. 1(2), pages 161-177, June.
    9. Cheng, T.C.E. & Shafransky, Y. & Ng, C.T., 2016. "An alternative approach for proving the NP-hardness of optimization problems," European Journal of Operational Research, Elsevier, vol. 248(1), pages 52-58.
    10. Ji-Bo Wang & Ming-Zheng Wang, 2011. "Worst-case behavior of simple sequencing rules in flow shop scheduling with general position-dependent learning effects," Annals of Operations Research, Springer, vol. 191(1), pages 155-169, November.
    11. J-B Wang, 2010. "Single-machine scheduling with a sum-of-actual-processing-time-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 172-177, January.
    12. Min Ji & Chou-Jung Hsu & Dar-Li Yang, 2013. "Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 437-447, October.
    13. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    14. W-H Kuo & D-L Yang, 2008. "Minimizing the makespan in a single-machine scheduling problem with the cyclic process of an aging effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 416-420, March.
    15. Finke, Gerd & Gara-Ali, Ahmed & Espinouse, Marie-Laure & Jost, Vincent & Moncel, Julien, 2017. "Unified matrix approach to solve production-maintenance problems on a single machine," Omega, Elsevier, vol. 66(PA), pages 140-146.
    16. Jun Pei & Bayi Cheng & Xinbao Liu & Panos M. Pardalos & Min Kong, 2019. "Single-machine and parallel-machine serial-batching scheduling problems with position-based learning effect and linear setup time," Annals of Operations Research, Springer, vol. 272(1), pages 217-241, January.
    17. Jiang, Zhongyi & Chen, Fangfang & Kang, Huiyan, 2013. "Single-machine scheduling problems with actual time-dependent and job-dependent learning effect," European Journal of Operational Research, Elsevier, vol. 227(1), pages 76-80.
    18. Wang, Ji-Bo, 2007. "Single-machine scheduling problems with the effects of learning and deterioration," Omega, Elsevier, vol. 35(4), pages 397-402, August.
    19. Li, Gang & Wang, Xiao-Yuan & Wang, Ji-Bo & Sun, Lin-Yan, 2013. "Worst case analysis of flow shop scheduling problems with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 142(1), pages 98-104.
    20. Lai, Peng-Jen & Lee, Wen-Chiung, 2011. "Single-machine scheduling with general sum-of-processing-time-based and position-based learning effects," Omega, Elsevier, vol. 39(5), pages 467-471, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:141:y:2013:i:1:p:79-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.