IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v28y2000i5p513-524.html
   My bibliography  Save this article

An iterative feature reduction algorithm for probabilistic neural networks

Author

Listed:
  • Tsai, Chih-Yang

Abstract

The issue of noise and redundant feature variables in classification problems has been well addressed in statistical stepwise discriminant analysis. However, no feature reduction algorithm designed specifically for Probabilistic Neural Network (PNN) is found in literature. In this study, we develop an ad hoc iterative feature (variable) reduction algorithm for basic PNNs to identify noise and redundant variables. A basic PNN applying the same smoothing factor to all variables does not distinguish variables adding little or no predictive power to the model from others. The proposed iterative approach utilizes a weighted PNN with one smoothing factor for each variable in the feature reduction stage. Once a subset of variables is selected, a basic PNN is developed on the chosen variables for future applications. Computational experiments on five data sets obtained from publicly available sources indicate that the basic PNN with variables chosen by the ad hoc approach outperforms the PNN using variables selected by two benchmark methods, back-propagation neural network and stepwise linear discriminant analysis.

Suggested Citation

  • Tsai, Chih-Yang, 2000. "An iterative feature reduction algorithm for probabilistic neural networks," Omega, Elsevier, vol. 28(5), pages 513-524, October.
  • Handle: RePEc:eee:jomega:v:28:y:2000:i:5:p:513-524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00077-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. S. Bradley & O. L. Mangasarian & W. N. Street, 1998. "Feature Selection via Mathematical Programming," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 209-217, May.
    2. Richard K. Orr, 1997. "Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery," Medical Decision Making, , vol. 17(2), pages 178-185, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Andres, Javier & Landajo, Manuel & Lorca, Pedro, 2005. "Forecasting business profitability by using classification techniques: A comparative analysis based on a Spanish case," European Journal of Operational Research, Elsevier, vol. 167(2), pages 518-542, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    2. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    3. Ravi, V. & Zimmermann, H. -J., 2000. "Fuzzy rule based classification with FeatureSelector and modified threshold accepting," European Journal of Operational Research, Elsevier, vol. 123(1), pages 16-28, May.
    4. H-W Cho & S H Baek & E Youn & M K Jeong & A Taylor, 2009. "A two-stage classification procedure for near-infrared spectra based on multi-scale vertical energy wavelet thresholding and SVM-based gradient-recursive feature elimination," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1107-1115, August.
    5. Mehdi Seraj & Pejman Bahramian & Abdulkareem Alhassan & Rasool Dehghanzadeh Shahabad, 2020. "The validity of Rodrik’s conclusion on real exchange rate and economic growth: factor priority evidence from feature selection approach," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-6, December.
    6. Louw, N. & Steel, S.J., 2006. "Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2043-2055, December.
    7. Peng Du & Jiming Peng & Tamás Terlaky, 2009. "Self-adaptive support vector machines: modelling and experiments," Computational Management Science, Springer, vol. 6(1), pages 41-51, February.
    8. J Kim & J Yang & S Ólafsson, 2009. "An optimization approach to partitional data clustering," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1069-1084, August.
    9. Schwartz, David R. & Kaufman, Adam B. & Schwartz, Ira M., 2004. "Computational intelligence techniques for risk assessment and decision support," Children and Youth Services Review, Elsevier, vol. 26(11), pages 1081-1095, November.
    10. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    11. Hao Wang & Fan Zhang & Yuanming Shi & Yaohua Hu, 2021. "Nonconvex and Nonsmooth Sparse Optimization via Adaptively Iterative Reweighted Methods," Journal of Global Optimization, Springer, vol. 81(3), pages 717-748, November.
    12. Kyoungmi Hwang & Dohyun Kim & Kyungsik Lee & Chungmok Lee & Sungsoo Park, 2017. "Embedded variable selection method using signomial classification," Annals of Operations Research, Springer, vol. 254(1), pages 89-109, July.
    13. Sunita Goel & Ozlem Uzuner, 2016. "Do Sentiments Matter in Fraud Detection? Estimating Semantic Orientation of Annual Reports," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 215-239, July.
    14. R. Chandrasekaran & Young U. Ryu & Varghese S. Jacob & Sungchul Hong, 2005. "Isotonic Separation," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 462-474, November.
    15. Fodor, Imola K. & Kamath, Chandrika, 2002. "Dimension reduction techniques and the classification of bent double galaxies," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 91-122, November.
    16. W. Nick Street, 2005. "Oblique Multicategory Decision Trees Using Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 25-31, February.
    17. Haldun Aytug & Gary J. Koehler & Ling He, 2008. "Risk Minimization and Minimum Description for Linear Discriminant Functions," INFORMS Journal on Computing, INFORMS, vol. 20(2), pages 317-331, May.
    18. Young Woong Park & Diego Klabjan, 2020. "Subset selection for multiple linear regression via optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 543-574, July.
    19. Sigurdur Ólafsson & Jaekyung Yang, 2005. "Intelligent Partitioning for Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 339-355, August.
    20. K Falangis & J J Glen, 2010. "Heuristics for feature selection in mathematical programming discriminant analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 804-812, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:28:y:2000:i:5:p:513-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.