IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v17y1997i2p178-185.html
   My bibliography  Save this article

Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery

Author

Listed:
  • Richard K. Orr

Abstract

Objective. To develop a probabilistic neural network (PNN) to estimate mortality risk following cardiac surgery. Design and setting. The PNN model was created using an institutional database obtained as part of routine quality assurance activity. Patient records (from 1991 to 1993) were randomly divided into training (n = 732) and validation (n = 380) sets. The model uses seven variables, each obtainable during routine clinical patient care. After completion of the initial validation phase, newer data (1994) became available and were used as an independent source of validation (n = 365). Patients. 1,477 consecutive cardiac surgery patients operated on in a teaching hospital during a four-year period (1991-94). Results. The overall accuracy of the neural network was 91.5% in the training set; it was 92.3% in the validation set. The model was well calibrated (p = 0.21 for the Hosmer-Lemeshow goodness-of-fit test) and discriminated well (areas under the ROC curves were 0.72 and 0.81 for the training and validation sets). The trained network also performed well on the 1994 data (ROC = 0.74, p = 0.19 for the Hosmer-Lemeshow test), albeit with a slight decrement in overall accuracy (88.2%). Conclusion. A neural network may be implemented to estimate mortality risk following cardiac surgery. Implementation is relatively rapid, and it is an alternative to standard statistical approaches. Key words: neural networks; cardiac surgery; predictive models. (Med Decis Making 1997;17:178-185)

Suggested Citation

  • Richard K. Orr, 1997. "Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery," Medical Decision Making, , vol. 17(2), pages 178-185, April.
  • Handle: RePEc:sae:medema:v:17:y:1997:i:2:p:178-185
    DOI: 10.1177/0272989X9701700208
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X9701700208
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X9701700208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Chih-Yang, 2000. "An iterative feature reduction algorithm for probabilistic neural networks," Omega, Elsevier, vol. 28(5), pages 513-524, October.
    2. Schwartz, David R. & Kaufman, Adam B. & Schwartz, Ira M., 2004. "Computational intelligence techniques for risk assessment and decision support," Children and Youth Services Review, Elsevier, vol. 26(11), pages 1081-1095, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:17:y:1997:i:2:p:178-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.