IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i8d10.1057_jors.2008.195.html
   My bibliography  Save this article

An optimization approach to partitional data clustering

Author

Listed:
  • J Kim

    (Korea Small Business Institute(KOSBI))

  • J Yang

    (Chonbuk National University)

  • S Ólafsson

    (Iowa State University)

Abstract

Scalability of clustering algorithms is a critical issue facing the data mining community. One method to handle this issue is to use only a subset of all instances. This paper develops an optimization-based approach to the partitional clustering problem using an algorithm specifically designed for noisy performance, which is a problem that arises when using a subset of instances. Numerical results show that computation time can be dramatically reduced by using a partial set of instances without sacrificing solution quality. In addition, these results are more persuasive as the size of the problem is larger.

Suggested Citation

  • J Kim & J Yang & S Ólafsson, 2009. "An optimization approach to partitional data clustering," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1069-1084, August.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:8:d:10.1057_jors.2008.195
    DOI: 10.1057/jors.2008.195
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2008.195
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2008.195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ja-Shen Chen & Russell K H Ching & Yi-Shen Lin, 2004. "An extended study of the K-means algorithm for data clustering and its applications," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 976-987, September.
    2. P. S. Bradley & O. L. Mangasarian & W. N. Street, 1998. "Feature Selection via Mathematical Programming," INFORMS Journal on Computing, INFORMS, vol. 10(2), pages 209-217, May.
    3. Basu, Amit, 1998. "Perspectives on operations research in data and knowledge management," European Journal of Operational Research, Elsevier, vol. 111(1), pages 1-14, November.
    4. Leyuan Shi & Sigurdur Ólafsson, 2000. "Nested Partitions Method for Global Optimization," Operations Research, INFORMS, vol. 48(3), pages 390-407, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bard, Jonathan F. & Jarrah, Ahmad I., 2013. "Integrating commercial and residential pickup and delivery networks: A case study," Omega, Elsevier, vol. 41(4), pages 706-720.
    2. Amin, Gholam R. & Emrouznejad, Ali & Rezaei, S., 2011. "Some clarifications on the DEA clustering approach," European Journal of Operational Research, Elsevier, vol. 215(2), pages 498-501, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sigurdur Ólafsson & Jaekyung Yang, 2005. "Intelligent Partitioning for Feature Selection," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 339-355, August.
    2. Olafsson, Sigurdur & Li, Xiaonan & Wu, Shuning, 2008. "Operations research and data mining," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1429-1448, June.
    3. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    4. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    5. Lee, Loo Hay & Chew, Ek Peng & Manikam, Puvaneswari, 2006. "A general framework on the simulation-based optimization under fixed computing budget," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1828-1841, November.
    6. David R. Morrison & Jason J. Sauppe & Wenda Zhang & Sheldon H. Jacobson & Edward C. Sewell, 2017. "Cyclic best first search: Using contours to guide branch‐and‐bound algorithms," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 64-82, February.
    7. Tsai, Chih-Yang, 2000. "An iterative feature reduction algorithm for probabilistic neural networks," Omega, Elsevier, vol. 28(5), pages 513-524, October.
    8. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    9. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    10. Lingxuan Liu & Leyuan Shi, 2019. "Simulation Optimization on Complex Job Shop Scheduling with Non-Identical Job Sizes," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-26, October.
    11. Ravi, V. & Zimmermann, H. -J., 2000. "Fuzzy rule based classification with FeatureSelector and modified threshold accepting," European Journal of Operational Research, Elsevier, vol. 123(1), pages 16-28, May.
    12. Choi, Hyunhong & Koo, Yoonmo, 2018. "Using Contingent Valuation and Numerical Methods to Determine Optimal Locations for Environmental Facilities: Public Arboretums in South Korea," Ecological Economics, Elsevier, vol. 149(C), pages 184-201.
    13. H-W Cho & S H Baek & E Youn & M K Jeong & A Taylor, 2009. "A two-stage classification procedure for near-infrared spectra based on multi-scale vertical energy wavelet thresholding and SVM-based gradient-recursive feature elimination," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1107-1115, August.
    14. Gino Lim & Laleh Kardar & Wenhua Cao, 2014. "A hybrid framework for optimizing beam angles in radiation therapy planning," Annals of Operations Research, Springer, vol. 217(1), pages 357-383, June.
    15. Michael Macgregor Perry, 2021. "Fisheries Management in Congested Waters: A Game-Theoretic Assessment of the East China Sea," Papers 2110.13966, arXiv.org, revised Feb 2022.
    16. Jeffrey D. Camm & James J. Cochran & David J. Curry & Sriram Kannan, 2006. "Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem," Management Science, INFORMS, vol. 52(3), pages 435-447, March.
    17. J S Edwards & B Ababneh & M Hall & D Shaw, 2009. "Knowledge management: a review of the field and of OR's contribution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 114-125, May.
    18. Zhenyuan Liu & Lei Xiao & Jing Tian, 2016. "An activity-list-based nested partitions algorithm for resource-constrained project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4744-4758, August.
    19. Weiwei Chen & Jie Song & Leyuan Shi & Liang Pi & Peter Sun, 2013. "Data mining-based dispatching system for solving the local pickup and delivery problem," Annals of Operations Research, Springer, vol. 203(1), pages 351-370, March.
    20. Mehdi Seraj & Pejman Bahramian & Abdulkareem Alhassan & Rasool Dehghanzadeh Shahabad, 2020. "The validity of Rodrik’s conclusion on real exchange rate and economic growth: factor priority evidence from feature selection approach," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-6, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:8:d:10.1057_jors.2008.195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.