IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2095-d625121.html
   My bibliography  Save this article

On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model

Author

Listed:
  • Ashwini Pradhan

    (Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India)

  • Debahuti Mishra

    (Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India)

  • Kaberi Das

    (Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India)

  • Ganapati Panda

    (Department of Electronics and Tele Communication, C. V. Raman Global University, Bhubaneswar 752054, Odisha, India)

  • Sachin Kumar

    (College of Information Business Systems, National University of Science and Technology, MISIS, Leninsky Prospect 4, 119049 Moscow, Russia)

  • Mikhail Zymbler

    (Department of Computer Science, South Ural State University, 454080 Chelyabinsk, Russia)

Abstract

Computer-aided diagnosis permits biopsy specimen analysis by creating quantitative images of brain diseases which enable the pathologists to examine the data properly. It has been observed from other image classification algorithms that the Extreme Learning Machine (ELM) demonstrates superior performance in terms of computational efforts. In this study, to classify the brain Magnetic Resonance Images as either normal or diseased, a hybridized Salp Swarm Algorithm-based ELM (ELM-SSA) is proposed. The SSA is employed to optimize the parameters associated with ELM model, whereas the Discrete Wavelet Transformation and Principal Component Analysis have been used for the feature extraction and reduction, respectively. The performance of the proposed “ELM-SSA” is evaluated through simulation study and compared with the standard classifiers such as Back-Propagation Neural Network, Functional Link Artificial Neural Network, and Radial Basis Function Network. All experimental validations have been carried out using two different brain disease datasets: Alzheimer’s and Hemorrhage. The simulation results demonstrate that the “ELM-SSA” is potentially superior to other hybrid methods in terms of ROC, AUC, and accuracy. To achieve better performance, reduce randomness, and overfitting, each algorithm has been run multiple times and a k -fold stratified cross-validation strategy has been used.

Suggested Citation

  • Ashwini Pradhan & Debahuti Mishra & Kaberi Das & Ganapati Panda & Sachin Kumar & Mikhail Zymbler, 2021. "On the Classification of MR Images Using “ELM-SSA” Coated Hybrid Model," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2095-:d:625121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sexton, Randall S. & Dorsey, Robert E. & Johnson, John D., 1999. "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," European Journal of Operational Research, Elsevier, vol. 114(3), pages 589-601, May.
    2. Gupta, Jatinder N. D. & Sexton, Randall S., 1999. "Comparing backpropagation with a genetic algorithm for neural network training," Omega, Elsevier, vol. 27(6), pages 679-684, December.
    3. Dong Xiao & Beijing Li & Yachun Mao, 2017. "A Multiple Hidden Layers Extreme Learning Machine Method and Its Application," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "A tabu search algorithm for the training of neural networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 282-291, February.
    2. Geraint Johnes, 2000. "Up Around the Bend: Linear and nonlinear models of the UK economy compared," International Review of Applied Economics, Taylor & Francis Journals, vol. 14(4), pages 485-493.
    3. Pendharkar, Parag C., 2002. "A computational study on the performance of artificial neural networks under changing structural design and data distribution," European Journal of Operational Research, Elsevier, vol. 138(1), pages 155-177, April.
    4. Joo, Rocío & Bertrand, Sophie & Chaigneau, Alexis & Ñiquen, Miguel, 2011. "Optimization of an artificial neural network for identifying fishing set positions from VMS data: An example from the Peruvian anchovy purse seine fishery," Ecological Modelling, Elsevier, vol. 222(4), pages 1048-1059.
    5. Laura Palagi, 2017. "Global Optimization issues in Supervised Learning. An overview," DIAG Technical Reports 2017-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    6. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    7. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.
    8. Gupta, Jatinder N. D. & Sexton, Randall S., 1999. "Comparing backpropagation with a genetic algorithm for neural network training," Omega, Elsevier, vol. 27(6), pages 679-684, December.
    9. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    10. Emir Malikov & Shunan Zhao & Subal C. Kumbhakar, 2020. "Estimation of firm‐level productivity in the presence of exports: Evidence from China's manufacturing," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 457-480, June.
    11. Jatinder N. D. Gupta & Randall S. Sexton & Enar A. Tunc, 2000. "Selecting Scheduling Heuristics Using Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 150-162, May.
    12. Montagno, Ray & Sexton, Randall S. & Smith, Brien N., 2002. "Using neural networks for identifying organizational improvement strategies," European Journal of Operational Research, Elsevier, vol. 142(2), pages 382-395, October.
    13. Rä‚Zvan Popa, 2020. "Improving Earnings Predictions With Neural Network Models," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 26, pages 77-96, December.
    14. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    15. Xiaorui Shao & Chang-Soo Kim & Palash Sontakke, 2020. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-Channel and Multi-Scale Feature Fusion CNN–LSTM," Energies, MDPI, vol. 13(8), pages 1-22, April.
    16. Pendharkar, Parag C., 2001. "An empirical study of design and testing of hybrid evolutionary-neural approach for classification," Omega, Elsevier, vol. 29(4), pages 361-374, August.
    17. Asaju La’aro Bolaji & Aminu Ali Ahmad & Peter Bamidele Shola, 2018. "Training of neural network for pattern classification using fireworks algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 208-215, February.
    18. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    19. Milica Maricic & Jose A. Egea & Veljko Jeremic, 2019. "A Hybrid Enhanced Scatter Search—Composite I-Distance Indicator (eSS-CIDI) Optimization Approach for Determining Weights Within Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 497-537, July.
    20. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2095-:d:625121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.