IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v129y2024ics0305048324001075.html
   My bibliography  Save this article

Data-driven prioritization strategies for inventory rebalancing in bike-sharing systems

Author

Listed:
  • Silva, Maria Clara Martins
  • Aloise, Daniel
  • Jena, Sanjay Dominik

Abstract

The popularity of bike-sharing systems has constantly increased throughout the recent years. Most of such success can be attributed to their multiple benefits, such as user convenience, low usage costs, health benefits and their contribution to environmental relief. However, satisfying all user demands remains a challenge, given that the inventories of bike-sharing stations tend to be unbalanced over time. Bike-sharing system operators must therefore intervene to rebalance station inventories to provide both available bikes and empty docks to the commuters. Due to limited rebalancing resources, the number of stations to be rebalanced often exceeds the system’s rebalancing capacity, especially close to peak hours. As a consequence, operators are forced to manually select a subset of stations that should be prioritized for rebalancing. While most of the literature has concentrated either on predicting optimal station inventories or on the rebalancing itself, the identification of critical stations that should be prioritized for rebalancing has received little attention. Given the importance of this step in current operating practices, we propose three strategies to select the stations that should be prioritized for rebalancing, using features such as the predicted trip demand and the inventory levels at the stations themselves. Two sets of computational experiments aim at evaluating the performance of the proposed prioritization strategies on real-world data from Montreal’s bike-sharing system operator. The first set of experiments focuses on both the 2019 and 2020 seasons, each of which exhibits distinct travel patterns given the restrictive measures implemented in 2020 to prevent the spread of COVID-19. One of these strategies significantly improves by reducing the estimated lost demand by up to 65%, while another strategy reduces the estimated number of required rebalancing operations by up to 33% when compared to the prioritization scheme currently in use at the considered bike-sharing system. The second set of experiments evaluates the performance of the proposed strategies when rebalancing decisions are optimized in a rolling horizon planning. The results highlight various benefits of the proposed strategies, which are efficiently solved as transportation problems and improve lost demand over two intuitive baselines.

Suggested Citation

  • Silva, Maria Clara Martins & Aloise, Daniel & Jena, Sanjay Dominik, 2024. "Data-driven prioritization strategies for inventory rebalancing in bike-sharing systems," Omega, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:jomega:v:129:y:2024:i:c:s0305048324001075
    DOI: 10.1016/j.omega.2024.103141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324001075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:129:y:2024:i:c:s0305048324001075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.