IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v127y2024ics0305048324000598.html
   My bibliography  Save this article

Risk-averse two-stage stochastic programming for assembly line reconfiguration with dynamic lot sizes

Author

Listed:
  • Li, Yuchen
  • Liu, Ming
  • Saldanha-da-Gama, Francisco
  • Yang, Zaoli

Abstract

In this paper, a comprehensive optimization problem is developed for a composite of an assembly line reconfiguration problem with multiple lines and a capacitated lot-sizing problem. Multiple products are considered, whose demand is uncertain and is dynamically forecasted. The production planner is assumed to be risk-averse, and decisions are made contingent upon the risk preference. To model the problem, a stochastic program with two stages is utilized. A solution approach is devised using a divide-and-conquer algorithm, which incorporates a set of valid inequalities. The effectiveness and efficiency of the proposed solution approach are assessed through a series of computational tests. Finally, a case study focusing on an engine production process is presented, leading to the derivation of several valuable insights.

Suggested Citation

  • Li, Yuchen & Liu, Ming & Saldanha-da-Gama, Francisco & Yang, Zaoli, 2024. "Risk-averse two-stage stochastic programming for assembly line reconfiguration with dynamic lot sizes," Omega, Elsevier, vol. 127(C).
  • Handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000598
    DOI: 10.1016/j.omega.2024.103092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324000598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mínguez, R. & van Ackooij, W. & García-Bertrand, R., 2021. "Constraint generation for risk averse two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 288(1), pages 194-206.
    2. Alan S. Manne, 1958. "Programming of Economic Lot Sizes," Management Science, INFORMS, vol. 4(2), pages 115-135, January.
    3. Li, Yuchen & Saldanha-da-Gama, Francisco & Liu, Ming & Yang, Zaoli, 2023. "A risk-averse two-stage stochastic programming model for a joint multi-item capacitated line balancing and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 304(1), pages 353-365.
    4. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    5. Adalberto Sato Michels & Alysson M. Costa, 2022. "Conserving workforce while temporarily rebalancing assembly lines under demand disruption," International Journal of Production Research, Taylor & Francis Journals, vol. 60(21), pages 6616-6636, November.
    6. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    7. Yahui Zhang & Xiaofeng Hu & Chuanxun Wu, 2018. "A modified multi-objective genetic algorithm for two-sided assembly line re-balancing problem of a shovel loader," International Journal of Production Research, Taylor & Francis Journals, vol. 56(9), pages 3043-3063, May.
    8. Yahui Zhang & Xiaofeng Hu & Chuanxun Wu, 2020. "Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3589-3617, June.
    9. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    10. Chao-Bo Yan & Ziqian Zheng, 2021. "An effective and efficient divide-and-conquer algorithm for energy consumption optimisation problem in long Bernoulli serial lines," International Journal of Production Research, Taylor & Francis Journals, vol. 59(23), pages 7018-7036, December.
    11. Yves Pochet & Laurence A. Wolsey, 1991. "Solving Multi-Item Lot-Sizing Problems Using Strong Cutting Planes," Management Science, INFORMS, vol. 37(1), pages 53-67, January.
    12. Arega Getaneh Abate & Rossana Riccardi & Carlos Ruiz, 2022. "Contract design in electricity markets with high penetration of renewables: A two-stage approach," Papers 2201.09927, arXiv.org, revised Jun 2022.
    13. Yuchen Li, 2017. "The type-II assembly line rebalancing problem considering stochastic task learning," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7334-7355, December.
    14. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    15. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2022. "Model-dependent task assignment in multi-manned mixed-model assembly lines with walking workers," Omega, Elsevier, vol. 113(C).
    16. Imad Belassiria & Mohamed Mazouzi & Said ELfezazi & Anass Cherrafi & Zakaria ELMaskaoui, 2018. "An integrated model for assembly line re-balancing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 56(16), pages 5324-5344, August.
    17. Saravanan Venkatachalam & Arunachalam Narayanan, 2016. "Efficient formulation and heuristics for multi-item single source ordering problem with transportation cost," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4087-4103, July.
    18. Romain Guillaume & Caroline Thierry & Paweł Zieliński, 2017. "Robust material requirement planning with cumulative demand under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6824-6845, November.
    19. Sculli, Dominic, 1979. "Dynamic aspects of line balancing," Omega, Elsevier, vol. 7(6), pages 557-561.
    20. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    21. Fernández, Elena & Hinojosa, Yolanda & Puerto, Justo & Saldanha-da-Gama, Francisco, 2019. "New algorithmic framework for conditional value at risk: Application to stochastic fixed-charge transportation," European Journal of Operational Research, Elsevier, vol. 277(1), pages 215-226.
    22. Li, Xishu & Zuidwijk, Rob & de Koster, M.B.M, 2023. "Optimal competitive capacity strategies: Evidence from the container shipping market," Omega, Elsevier, vol. 115(C).
    23. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    24. Bernard P. Dzielinski & Ralph E. Gomory, 1965. "Optimal Programming of Lot Sizes, Inventory and Labor Allocations," Management Science, INFORMS, vol. 11(9), pages 874-890, July.
    25. Fan, Jie & Ou, Jinwen, 2023. "On dynamic lot sizing with bounded inventory for a perishable product," Omega, Elsevier, vol. 119(C).
    26. Tao Wu & Zhe Liang & Canrong Zhang, 2018. "Analytics Branching and Selection for the Capacitated Multi-Item Lot Sizing Problem with Nonidentical Machines," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 236-258, May.
    27. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    28. Tempelmeier, Horst, 2011. "A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint," Omega, Elsevier, vol. 39(6), pages 627-633, December.
    29. Taube, F. & Minner, S., 2018. "Resequencing mixed-model assembly lines with restoration to customer orders," Omega, Elsevier, vol. 78(C), pages 99-111.
    30. Weskamp, Christoph & Koberstein, Achim & Schwartz, Frank & Suhl, Leena & Voß, Stefan, 2019. "A two-stage stochastic programming approach for identifying optimal postponement strategies in supply chains with uncertain demand," Omega, Elsevier, vol. 83(C), pages 123-138.
    31. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    32. J. Behnamian & S.M.T. Fatemi Ghomi & B. Karimi & M. Fadaei Moludi, 2017. "A Markovian approach for multi-level multi-product multi-period capacitated lot-sizing problem with uncertainty in levels," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5330-5340, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuchen & Saldanha-da-Gama, Francisco & Liu, Ming & Yang, Zaoli, 2023. "A risk-averse two-stage stochastic programming model for a joint multi-item capacitated line balancing and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 304(1), pages 353-365.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    4. Zhao, Shuaiqi & Yang, Hualong & Zheng, Jianfeng & Li, Dechang, 2024. "A two-step approach for deploying heterogeneous vessels and designing reliable schedule in liner shipping services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    5. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    6. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    7. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    8. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    9. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    10. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    11. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    12. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    13. Nan Zhang & Heng Xu, 2024. "Fairness of Ratemaking for Catastrophe Insurance: Lessons from Machine Learning," Information Systems Research, INFORMS, vol. 35(2), pages 469-488, June.
    14. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    15. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    16. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    17. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    18. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2014. "Bank regulation and international financial stability: A case against the 2006 Basel framework for controlling tail risk in trading books," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 107-130.
    19. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    20. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:127:y:2024:i:c:s0305048324000598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.