IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i12p3589-3617.html
   My bibliography  Save this article

Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints

Author

Listed:
  • Yahui Zhang
  • Xiaofeng Hu
  • Chuanxun Wu

Abstract

In this paper, a mathematical model and an improved imperial competition algorithm (IICA) are proposed to solve the multi-objective two-sided assembly line rebalancing problem with space and resource restrictions (MTALRBP-SR). The aim is to find lines’ rebalance with the trade-off between efficiency, rebalancing cost and smoothing after reconfiguration. IICA utilises a new initialisation heuristic procedure based on classic heuristic rules to generate feasible initial solutions. A novel heuristic assimilation method is developed to vigorously conduct local search. In addition, a group-based decoding heuristic procedure is developed to fulfil the final task reassignment with the additional restrictions. To investigate the performance of the proposed algorithm, it is first tested on MTALRBP of benchmark problems and compared with some existing algorithms such as genetic algorithm, variable neighbourhood search algorithm, discrete artificial bee colony algorithm, and two iterated greedy algorithms. Next, the efficiency of the proposed IICA for solving MTALRBP-SR is revealed by comparison with a non-dominated sorting genetic algorithm (NSGA-II) and two versions of original ICA. Computational results and comparisons show the efficiency and effectiveness of IICA. Furthermore, a real-world case study is conducted to validate the proposed algorithm.

Suggested Citation

  • Yahui Zhang & Xiaofeng Hu & Chuanxun Wu, 2020. "Improved imperialist competitive algorithms for rebalancing multi-objective two-sided assembly lines with space and resource constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3589-3617, June.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3589-3617
    DOI: 10.1080/00207543.2019.1633023
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1633023
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1633023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yuchen & Liu, Ming & Saldanha-da-Gama, Francisco & Yang, Zaoli, 2024. "Risk-averse two-stage stochastic programming for assembly line reconfiguration with dynamic lot sizes," Omega, Elsevier, vol. 127(C).
    2. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    3. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:12:p:3589-3617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.