IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i6p1276-1287.html
   My bibliography  Save this article

Bivariate Student t distributions with variable marginal degrees of freedom and independence

Author

Listed:
  • Shaw, W.T.
  • Lee, K.T.A.

Abstract

We propose a class of bivariate Student t distributions generalizing the standard density. Our generalization allows for differing marginal degrees of freedom and independent marginals. There are several approaches to constructing such distributions, but in the special case of the Student-normal distribution we show that there is a common canonical limit. Our distributions arise from the techniques used in t-copula simulation, rather than the traditional elliptical methodology.

Suggested Citation

  • Shaw, W.T. & Lee, K.T.A., 2008. "Bivariate Student t distributions with variable marginal degrees of freedom and independence," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1276-1287, July.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:6:p:1276-1287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00113-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    2. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, January.
    3. Jones, M. C., 2002. "A dependent bivariate t distribution with marginals on different degrees of freedom," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 163-170, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William T. Shaw, 2011. "Risk, VaR, CVaR and their associated Portfolio Optimizations when Asset Returns have a Multivariate Student T Distribution," Papers 1102.5665, arXiv.org.
    2. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    3. Ebrahimi, Nader & Hamedani, G.G. & Soofi, Ehsan S. & Volkmer, Hans, 2010. "A class of models for uncorrelated random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1859-1871, September.
    4. S.T. Boris Choy & Cathy W.S. Chen & Edward M.H. Lin, 2014. "Bivariate asymmetric GARCH models with heavy tails and dynamic conditional correlations," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1297-1313, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    2. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    3. Maria Grazia Zoia & Gianmarco Vacca & Laura Barbieri, 2020. "Modeling Multivariate Financial Series and Computing Risk Measures via Gram–Charlier-Like Expansions," Risks, MDPI, vol. 8(4), pages 1-21, November.
    4. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    5. Enzo D’Innocenzo & Alessandra Luati & Mario Mazzocchi, 2023. "A robust score-driven filter for multivariate time series," Econometric Reviews, Taylor & Francis Journals, vol. 42(5), pages 441-470, May.
    6. Jaser Miriam & Haug Stephan & Min Aleksey, 2017. "A simple non-parametric goodness-of-fit test for elliptical copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 330-353, December.
    7. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    8. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    9. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    10. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    11. Shilan Li & Jianxin Shi & Paul Albert & Hong-Bin Fang, 2022. "Dependence Structure Analysis and Its Application in Human Microbiome," Mathematics, MDPI, vol. 11(1), pages 1-14, December.
    12. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    13. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    14. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    15. Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
    16. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    17. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    18. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    20. Indranil Ghosh & Dalton Watts & Subrata Chakraborty, 2022. "Modeling Bivariate Dependency in Insurance Data via Copula: A Brief Study," JRFM, MDPI, vol. 15(8), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:6:p:1276-1287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.